[1]李文敏,张家锋.具有消失位势的Schr?dinger - Poisson系统的可解性[J].延边大学学报(自然科学版),2023,(03):195-202.
 LI Wenmin,ZHANG Jiafeng.The solvability of critical Schr?dinger - Poisson systems in volving vanishing potential[J].Journal of Yanbian University,2023,(03):195-202.
点击复制

具有消失位势的Schr?dinger - Poisson系统的可解性

参考文献/References:

[1] SUN J T, CHEN H B, YANG L.Positive solutions of asymptotically linear Schr?dinger - Poisson systems with a radial potential vanishing at infinity [J].Nonlinear Analysis: Theory, Methods and Applications, 2011,74(2):413 - 423.
[2] LIU H D.Positive solutions of an asymptotically periodic Schr?dinger - Poisson system with critical exponent [J].Nonlinear Analysis: Real World Applications, 2016,32:198 - 212.
[3] SHAO L Y.Non - trivial solutions for Schr?dinger - Poisson systems involving critical nonlocal term and potential vanishing at infinity [J].Open Mathematics, 2019,17(1):1156 - 1167.
[4] ZHANG J F, GUO W, CHU C M, et al.Existence of solutions for a Schr?dinger - Poisson system with critical nonlocal term and general nonlinearity [J].Journal of Function Spaces, 2020,2020:2197207.
[5] QIAN X T.Multiplicity of positive solutions for a class of nonlocal problem involving critical exponent [J].Electronic Journal of Qualitative Theory of Differential Equations, 2021,2021(57):1 - 14.
[6] ALVES C O, SOUTO M A S.Existence of solutions for a class of nonlinear Schr?dinger equations with potential vanishing at infinity [J].Journal of Differential Equations, 2013,254(4):1977 - 1991.
[7] SUN J B, WANG Z Q, WILLEM M.Weighted Sobolev embedding with unbounded and decaying radial potentials [J].Journal of Differential Equations, 2007,238(1):201 - 219.
[8] AMBROSETTI A, MALCHIODI A, FELLI V.Ground states of nonlinear Schr?dinger equations with potentials vanishing at infinity [J].Journal of the European Mathematical Society, 2005,7(1):117 - 144.
[9] KHOUTIR S, CHEN H B.Positive ground state solutions for a class of Schr?dinger - Poisson systems in R4 involving critical Sobolev exponent [J].Asymptotic Analysis, 2018,109(1/2):91 - 109.
[10] BREZIS H, LIEB E.A relation between pointwise convergence of functions and convergence of functionals [J].Proceedings of the American Mathematical Society, 1983,88(3):486 - 490.

相似文献/References:

[1]钱晓涛,石志高.一类Kirchhoff型方程解的存在性和多重性[J].延边大学学报(自然科学版),2018,44(04):302.
 QIAN Xiaotao,SHI Zhigao.Existence and multiplicity of solutions for a class of Kirchhoff type equation[J].Journal of Yanbian University,2018,44(03):302.
[2]吴燕林,钱晓涛.一类次临界增长非局部问题的无穷多解[J].延边大学学报(自然科学版),2019,45(04):299.
 WU Yanlin,QIAN Xiaotao.Infinitely many solutions for a class of nonlocalproblem with subcritical growth[J].Journal of Yanbian University,2019,45(03):299.
[3]吴燕林,钱晓涛.全空间上一类Kirchhoff型问题正基态解的存在性[J].延边大学学报(自然科学版),2021,47(01):17.
 WU Yanlin,QIAN Xiaotao.Existence of ground state positive solution for a class of Kirchhoff type problem on unbounded domain[J].Journal of Yanbian University,2021,47(03):17.
[4]魏其萍,王跃*.一类负模量Kirchhoff - Carrier方程的解[J].延边大学学报(自然科学版),2021,47(02):111.
 WEI Qiping,WANG Yue*.The solution to a Kirchhoff - Carrier equation with Negative Modulus[J].Journal of Yanbian University,2021,47(03):111.

备注/Memo

收稿日期: 2023-06-01
基金项目: 国家自然科学基金(11861021); 贵州民族大学自然科学研究项目(GZMUZK[2022]YB23)
第一作者: 李文敏(1999—),女,硕士研究生,研究方向为非线性泛函分析及应用.
通信作者: 张家锋(1981—),男,博士,教授,研究方向为非线性泛函分析及应用.

更新日期/Last Update: 2023-09-20