ZHAO Yannan.The application of the extended Jacobi elliptic function expansion method to the exact solution of Chen -Lee -Liu equation[J].Journal of Yanbian University,2023,(01):70-76.
扩展的Jacobi椭圆函数展开法在求解Chen - Lee - Liu方程精确解中的应用
- Title:
- The application of the extended Jacobi elliptic function expansion method to the exact solution of Chen -Lee -Liu equation
- 文章编号:
- 1004-4353(2023)01-0070-07
- 关键词:
- Jacobi椭圆函数展开法; Chen - Lee - Liu方程; 周期解; 精确解
- Keywords:
- Jacobi elliptic function expansion method; Chen - Lee - Liu equation; periodic solution; exact solution
- 分类号:
- O175.29
- 文献标志码:
- A
- 摘要:
- 利用扩展的Jacobi椭圆函数展开法研究了Chen - Lee - Liu方程的精确解,所得解包括该方程的系列周期解和孤子解.特别地,当m→1和m→0时,得到了该方程的三角函数解和双曲函数解的精确表达式.绘制了该方程的三角函数解和双曲函数解的孤波图.其二维图像显示,孤立波的振幅不随时间的变化而发生变化,但其空间位置发生变化.
- Abstract:
- The exact solution of Chen - Lee - Liu equation is studied by using the extended Jacobi elliptic function expansion method.The obtained solutions include the series periodic solutions and soliton solutions of the equation.In particular, the exact expressions of trigonometric and hyperbolic solutions of Chen - Lee - Liu equation are obtained as m→1 and m→0.The characteristics of the obtained solutions are visualized graphically.From the two - dimensional graphs, the amplitude of the solition wave does not change over time, but their spatial position shifts.
参考文献/References:
[1] WANG M L, ZHOU Y B, LI Z B.Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics [J].Phys Lett A, 1996,216(1/5):67 - 75.
[2] 张桂戍,李志斌,段一士.非线性方程的精确孤立波解[J].中国科学,2000,30(12):1103 - 1108.
[3] ABLOWITZ M J, CLARKSON P A.Soliton, Nonlinear Evolution Equations and Inverse Scattering[M].New York: Cambridge University Press, 1991.
[4] YAN C T.A simple transformation for nonlinear waves [J].Phys Lett A, 1996,224(1/2):77 - 84.
[5] 谷超豪.孤立子理论及其应用[M].浙江:浙江科技出版社,1990.
[6] 谷超豪,胡和生,周子翔.孤立子中的Darboux变换及其几何应用[M].上海:上海科技出版社,1999.
[7] 刘式适,傅遵涛,刘式达.Jacobi椭圆函数展开法及其在求解非线性波动方程中的应用[J].物理学报,2001,50(11):2068 - 2073.
[8] 翁建平.用Jacobi椭圆函数求非线性方程的解析解[J].安徽大学学报(自然科学版),2005,29(5):39 - 42.
[9] 肖亚峰,薛海丽,张鸿庆.一类非线性发展方程的改进的Jacobi椭圆函数精确解[J].中北大学学报(自然科学版),2012,33(2):93 - 97.
[10] 赵贞,庞晶.基于改进的Jacobi椭圆函数展开法构造STO方程的解[J].内蒙古工业大学学报(自然科学版),2021,40(3):168 - 174.
[11] ZHAO Y N, WANG N.The exact solutions of Fokas - Lenells equation based on Jacobi elliptic function expansion method [J].Boundary Value Problems, 2022,2022:93.
[12] 李向正,张金良.Chen - Lee - Liu方程的精确解[J].兰州理工大学学报,2008,34(2):151 - 154.
[13] OZDEMIR N, ESEN H, SECER A, et al.Optical soliton solutions to Chen - Lee - Liu model by the modified extended tanh expansion scheme [J].Optik, 2021,245:167643.
[14] PENG W Q, PU J C, CHEN Y.PINN deep learning for the Chen - Lee - Liu equation: Rogue wave on the periodic background [J].Commun Nonlinear Sci Numer Simulat, 2022,105:106067.
[15] TARLA S, ALI K K, YILMAZER R, et al.New optical solitons based on the perturbed Chen - Lee - Liu model through Jacobi elliptic function method [J].Optical and Quantum Electronics, 2022,54:131.
[16] REHMAN H U, BIBI M, SALEEM M S, et al.New optical soliton solutions of the Chen - Lee - Liu equation [J].International Journal of Modern Physics B, 2021,35(18):2150184.
[17] 刘适式,刘适达.物理学中的非线性方程[M].北京:北京大学出版社,2012.
备注/Memo
收稿日期: 2023-01-06
基金项目: 山西省教育科学“十四五”规划课题(GH-21253); 山西省高等学校科技创新项目(2020L0738); 山西工商学院校级科研课题(202257)
作者简介: 赵雁楠(1986—),女,硕士,讲师,研究方向为孤子理论及其应用.