ZHU Guocheng.Redefinition of probabilistic hesitant fuzzy sets and its application in group decision making[J].Journal of Yanbian University,2023,(01):61-69.
概率犹豫模糊集的再定义及其在群决策中的应用
- Title:
- Redefinition of probabilistic hesitant fuzzy sets and its application in group decision making
- 文章编号:
- 1004-4353(2023)01-0061-09
- 关键词:
- 概率犹豫模糊集; 几何距离模型; 离差程度系数模型; Maclaurin对称平均算子; 多属性决策问题
- Keywords:
- probabilistic hesitant fuzzy set; geometric distance model; deviation degree coefficient model; Maclaurin symmetric averaging operator; multi - attribute group decision making problem
- 分类号:
- O159
- 文献标志码:
- A
- 摘要:
- 为了更好地解决概率犹豫模糊集多属性群决策问题,构建了一种在不同维度下比较各方案综合属性值大小的决策模型.首先,以二维坐标形式给出概率犹豫模糊集(PHFS)中的隶属度和概率,并在此基础上建立概率犹豫模糊元(PHFE)的二维几何距离模型和二维离差程度系数模型; 其次,对PHFS中的隶属度赋予相应的评审专家权重,并用三维坐标刻画隶属度、概率和评审专家权重,以此建立PHFE的三维几何距离模型和三维离差程度系数模型; 再次,在二维与三维条件下分别计算2种维度下PHFE的综合值,并利用Maclaurin对称平均算子对以上2种维度下各个PHFE的综合值进行集结并排序; 最后,利用实例对在2种维度下建立的算法进行了验证分析.结果显示所建立的算法均可对各方案进行有效地排序,但由于在三维视角下建立的决策模型能够反映评审专家的偏好问题,因此该模型的决策效果相对更好.
- Abstract:
- In order to solve the multi - attribute group decision making problem of the probabilistic hesitant fuzzy sets, a decision model is constructed to compare the comprehensive attribute value of each scheme under different dimensions.Firstly, the membership degree and probability of the probabilistic hesitant fuzzy sets are written in the form of two - dimensional coordinates, and on this basis, the two - dimensional geometric distance model and the two - dimensional deviation degree coefficient model of the probabilistic hesitant fuzzy elements are established.Secondly, the membership degree of the probabilistic hesitant fuzzy sets is assigned to the corresponding weight of the evaluation experts, and the membership degree, probability and the assigned weight of the evaluation experts are described by three - dimensional coordinates, accordingly establish the three - dimensional geometric distance model and the three - dimensional deviation degree coefficient model of the probabilistic hesitant fuzzy elements.Thirdly, the comprehensive values of the probabilistic hesitant fuzzy elements under two dimensions and three dimensions were calculated respectively, and the Maclaurin symmetric average operator is used to aggregate and rank the comprehensive values of the probabilistic hesitant fuzzy elements under the above two dimensions.Finally, an example is used to in the two dimensional analysis of the algorithm are verified.The results show that the algorithm in two dimensions can be effective scheme of the sort, but because in a three - dimensional perspective to establish a decision - making model could reflect the preference of evaluation experts, the decision - making effect of the model is relatively better.
参考文献/References:
[1] 朱斌.基于偏好关系的决策方法研究及应用[D].南京:东南大学经济管理学院,2014.
[2] ZHANG Z M.Weighted hesitant fuzzy sets and their application to multi - criteria decision making [J].British Journal of Mathematics and Computer Science, 2014,4(8):1091 - 1123.
[3] FARHADINIA B.Utility of correlation measure for weighed hesitant fuzzy sets in medical diagnosis problems [J].Mathematical and Applications, 2016,1(2):36 - 45.
[4] XU Z S, ZHOU W.Consence building with a group of decision makers under the hesitant probabilistic fuzzy environment [J].Fuzzy Optimization and Decision Making, 2017,16(4):481 - 503.
[5] 高建伟,黄鑫,郭奉佳,等.基于累积前景理论的概率犹豫模糊多属性决策方法[J].数学的实践与认识,2021,51(10):45 - 58.
[6] 饶益,陈云翔,蔡忠义,等.考虑专家偏好的基于概率犹豫模糊熵的多属性决策方法[J].火力与指挥控制,2021,46(4):4 - 13.
[7] 武文颖,李应,倪志伟,等.概率犹豫模糊Maclaurin几何对称平均算子及其群决策模型[J].系统科学与数学,2020,40(6):1074 - 1089.
[8] ZHANG S, XU Z S, HE Y.Operations and intergrations of probabilistic hesitant fuzzy informationin decision making [J].Information Fusion, 2017,38:1 - 11.
[9] 朱国成,陈利群,李峰.解决概率犹豫模糊集多属性群决策问题的两种算法[J].东莞理工学院学报,2022,29(5):1 - 6.
备注/Memo
收稿日期: 2021-12-05
基金项目: 广东创新科技职业学院特色创新类重点资助项目(2022TSZD05)
作者简介: 朱国成(1986—),男,硕士,讲师,研究方向为模糊信息决策与最优化.