[1]赵安婷,方明,陶元红.三维X型态的相干值计算[J].延边大学学报(自然科学版),2023,(01):48-52.
 ZHAO Anting,FANG Ming,TAO Yuanhong.Quantum coherence of three - dimensional X states[J].Journal of Yanbian University,2023,(01):48-52.
点击复制

三维X型态的相干值计算

参考文献/References:

[1] JHA P K, MREJEN M, KIM J, et al.Coherence - driven topological transition in quantum metamaterials [J].Phys Rev Lett, 2016,116(16):165502.
[2] LLOYD S.Quantum coherence in biological systems [J].J Phys Conf Ser, 2011,302(1):012037.
[3] BAUMGRATZ T, CRAMER M, PLENIO M B.Quantifying coherence [J].Phys Rev Lett, 2014,113(14):140401.
[4] YU X D, ZHANG D J, XU G F, et al.Alternative framework for quantifying coherence [J].Phys Rev A, 2016,94(6):060302.
[5] BAI Z F, DU S P.Maximally coherent states [J/OL].Quantum Information & Computation.(2015-03-24)[2022-01-12].https://arxiv.org/pdf/1503.07103.
[6] XIONG C H, KUMAR A, WU J D.Family of coherence measures and duality between quantum coherence and path distinguish ability [J].Phys Rev A, 2018,98(3):032324.
[7] ZHANG F G, SHAO L H, LUO Y, et al.Ordering states with Tsallis relative α - entropies of coherence [J].Quant Inf Proc, 2017,16:1 - 17.
[8] SHAO L H, LI Y M, LUO Y, et al.Quantum coherence quantifiers based on the Rényi - α relative entropy [J].Commun Theor Phys, 2017,67(6):631 - 636.
[9] STRELTSOV A, SINGH U, DHAR H S, et al.Measuring quantum coherence with entanglement [J].Phys Rev Lett, 2015,115(2):020403.
[10] SHAO L H, XI Z J, FAN H, et al.The fidelity and trace norm distances for quantifying coherence [J].Phys Rev A, 2015,91(4):042120.
[11] LIU C L, ZHANG D J, YU X D, et al.A new coherence measure based on fidelity [J].Quant Inf Proc, 2017,16:1 - 10.
[12] 孙柳,陶元红,李江鹏.二维量子态的相干值计算[J].延边大学学报(自然科学版),2022,48(2):107 - 111.
[13] ZHANG H J, CHEN B, LI M, et al.Estimation on geometric measure of quantum coherence [J].Commun Theor Phys, 2017,67(2):166 - 170.
[14] CHEN B, FEI S M.Notes on modified trace distance measure of coherence [J].Quant Inf Proc, 2018,17(5):107.
[15] 廉晓龙,李江鹏,孙柳,等.最大相干混合态的量子相干性[J].哈尔滨理工大学学报,2022,27(5):147 - 150.
[16] WANG Y K, GE L Z, TAO Y H.Quantum coherence in mutually unbiased bases [J].Quant Inf Proc, 2019,18(6):1 - 12.
[17] YU C S.Quantum coherence via skew information and its polygamy [J].Phys Rev A, 2017,95(4):042337.

备注/Memo

收稿日期: 2023-02-18
基金项目: 国家自然科学基金(11761073)
第一作者: 赵安婷(1999—),女,硕士研究生,研究方向为量子信息与量子计算.
通信作者: 陶元红(1973—),女,硕士,教授,研究方向为量子信息与量子计算.

更新日期/Last Update: 2023-02-01