LU Qiuci,WANG Xuebin,ZHANG Songchuan,et al.Solitary wave solutions for a class of time - space fractional - order Klein - Gordon equation[J].Journal of Yanbian University,2023,(01):30-35.
一类时间空间分数阶Klein - Gordon方程的孤立波解
- Title:
- Solitary wave solutions for a class of time - space fractional - order Klein - Gordon equation
- 文章编号:
- 1004-4353(2023)01-0030-06
- 关键词:
- 时间 - 空间分数阶Klein - Gordon方程; 1/G展开法; 行波变换; 保形分数阶导数; 孤立波解
- Keywords:
- time - space fractional - order Klein - Gordon equation; 1/G expansion method; traveling wave transformation; conformal fractional - order derivative; solitary wave solution
- 分类号:
- O175.26
- 文献标志码:
- A
- 摘要:
- 利用1/G展开法对一类时间 - 空间分数阶Klein - Gordon方程进行了求解,并得到了丰富的行波解.所得解主要为该方程的孤立波解和扭曲波解.选取部分解进行相图分析显示,所得解均是有效的.该研究结果扩展了分数阶Klein - Gordon方程的应用范围.
- Abstract:
- The 1/G expansion method is adopted for solving a class of time - space fractional - order Klein - Gordon equations.Computed results present abundant traveling wave solutions, which mainly include two parts: solitary wave solutions and distorted wave solutions.Furthermore, the part of phase diagrams of the obtained solutions are analyzed, and the results show that the obtained solutions is valid.The research extends the application scope of the fractional Klein - Gordon equations.
参考文献/References:
[1] HILFER R.Applications of fractional calculus in physics [M].Singapore: World Scientific, 1999:1 - 15.
[2] KILBAS A A, SRIVASTAVA H M, TRUJILLO J J.Theory and applications of fractional differential equations [M].Amsterdam: Elsevier, 2006:3 - 20.
[3] 曾谨言.量子力学:第2卷[M].北京:科学出版社,2005:1 - 23.
[4] Sirendaoreji.Auxiliary equation method and new solutions of Klein - Gordon equations [J].Chaos, Solitons and Fractals, 2007,31(3):943 - 950.
[5] 郭琳,斯仁道尔吉.用辅助方程法构造时空分数阶Klein - Gordon方程的精确解[J].广西师范学院学报(自然科学版),2019,36(2):24 - 31.
[6] KAPLAN M, AKBULUT A, BEKIR A.Solving space - time fractional differential equations by using modified simple equation method [J].Commun Theor Phys, 2016,65(5):563 - 568.
[7] LU B.The first integral method for some time fractional differential equations [J].J Math Anal Appl, 2012,395(2):684 - 693.
[8] 李钊,孙峪怀,张雪,等.非线性分数阶Klein - Gordon方程的新显式解(英文)[J].四川大学学报(自然科学版),2017,54(2):221 - 226.
[9] ALIREZA K G, DUMITRU B.On nonlinear fractional Klein - Gordon equation [J].Signal Processing, 2011,91(3):446 - 451.
[10] 周琴,杨银.求解非线性时间分数阶Klein - Gordon方程的谱配置方法[J].吉林大学学报(理学版),2018,56(2):286 - 292.
[11] ZHU W J, XIA Y H, ZHANG B, et al.Exact traveling wave solutions and bifurcations of the time - fractional differential equations with applications [J].International Journal of Bifurcation and Chaos, 2019,29(3):1950041.
[12] 陆求赐,张宋传,王学彬.一类Burgers方程的孤立波解[J].数学的实践与认识,2021,51(7):299 - 303.
[13] 陆求赐,张宋传,王学彬.一类mKdV方程的孤立波解[J].中央民族大学学报(自然科学版),2021,30(2):5 - 11.
[14] WANG M L, LI X Z, ZHANG J L.The(G’/G)- expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics [J].Phys Lett A, 2008,372(4):417 - 423.
[15] PANG J, BIAN C Q, LU C.A new auxiliary equation method for finding travelling wave solutions to KdV equation [J].Appl Math Mech, 2010,31(7):929 - 936.
[16] 尹君毅.扩展的(G’/G)展开法和Zakharov方程组的新精确解[J].物理学报,2013,62(20):1 - 5.
备注/Memo
收稿日期: 2022-11-29
基金项目: 福建省教育厅科技项目(JA15512,JAT160519); 福建省自然科学基金(2021J011148); 武夷学院高级引进人才科研启动基金(YJ201802)
作者简介: 陆求赐(1975—),男,硕士,副教授,研究方向为基础数学教学和微分方程.