[1]王枫,葛琦.一类含CFC - 分数阶导数微分方程的Lyapunov不等式及其解的存在唯一性[J].延边大学学报(自然科学版),2023,(01):1-7.
 WANG Feng,GE Qi.Lyapunov inequalities and existence and uniqueness of solutions for a class of differential equations with CFC - fractional derivatives[J].Journal of Yanbian University,2023,(01):1-7.
点击复制

一类含CFC - 分数阶导数微分方程的Lyapunov不等式及其解的存在唯一性

参考文献/References:

[1] LYAPUNOV A M.Probleme general de la stabilite du movement [J].Ann Fac Sci Univ Toulouse, 1907,9:203 - 474.
[2] KIRANE M, TOREBEK B T.A Lyapunov - type inequality for a fractional boundary value problem with Caputo - Fabrizio derivative [J].J Math Inequal, 2018,12(4):1005 - 1012.
[3] LIU Y, XIE D P, YANG D D, et al.Two generalized Lyapunov - type inequalities for a fractional p - Laplacian equation with fractional boundary conditions [J].J Inequal Appl, 2017,2017:98.
[4] JIELI M, SAMET B.A Lyapunov - type inequalities for a fractional q - difference boundary value problem [J].J Nonlinear Sci Appl, 2016,9(5):1965 - 1976.
[5] ALKAHTANI B S T, ATANGANA A.Controlling the wave movement on the surface of shallow water with the Caputo - Fabrizio derivative with fractional order [J].Chaos Solitons Fractals, 2016,89:539 - 546.
[6] JARRAH A M, AI - REFAI M.Fundamental results on weighted Caputo - Fabrizio fractional derivative [J].Chaos Solition Fract, 2019,126:7 - 11.
[7] 吴强,黄建华.分数阶微积分[M].北京:清华大学出版社,2016:28 - 35.
[8] CAPUTO M, FABRIZIO M.A new definition of fractional derivative without singular Kernel [J].Progress in Fractional Differentiation & Applications, 2015,1(2):73 - 85.
[9] ABDELJAWAD T.Fractional operators with exponential Kernels and a Lyapunov type inequality [J].Adv Differ Equ, 2017,2017:313.
[10] 郑安利,冯育强,王蔚敏.分数阶微分方程的Hyers - Ulam稳定性[J].中国科技论文在线精品论文,2016,9(1):64 - 70.
[11] 王枫,葛琦.一类非线性分数阶微分方程多重正解存在的充分条件[J].延边大学学报(自然科学版),2022,48(3):189 - 195.
[12] 甘亦苗,侯成敏.一类Hilfer型分数阶微分方程解的存在和唯一性[J].延边大学学报(自然科学版),2020,46(2):95 - 100.

相似文献/References:

[1]葛月英,葛琦.一类Hadamard型分数阶微分方程边值问题的Lyapunov不等式及其解的存在性[J].延边大学学报(自然科学版),2023,(03):189.
 GE Yueying,GE Qi.Existence of Lyapunov inequality and its solutions for a class of boundary value problems for fractional differential equations of Hardmard type[J].Journal of Yanbian University,2023,(01):189.

备注/Memo

收稿日期: 2022-12-21
基金项目: 吉林省教育厅科学技术研究项目(JJKH2022527KJ)
第一作者: 王枫(1997—),男,硕士研究生,研究方向为常微分方程.
通信作者: 葛琦(1975—),女,硕士,教授,研究方向为常微分方程.

更新日期/Last Update: 2023-02-01