ZHANG Lili,MA Zuojun.Stability in a Lotka -Volterra predator - prey model with diffusion and harvesting rate[J].Journal of Yanbian University,2022,(04):336-338.
一类带收获率的捕食者- 食饵扩散模型的稳定性
- Title:
- Stability in a Lotka -Volterra predator - prey model with diffusion and harvesting rate
- 文章编号:
- 1004-4353(2022)04-0336-03
- 关键词:
- Lotka -Volterra捕食者- 食饵模型; 收获率; 扩散; 稳定性
- 分类号:
- O175.26
- 文献标志码:
- A
- 摘要:
- 研究了一类带收获率的Lotka -Volterra捕食者- 食饵扩散模型的稳定性,并应用线性化方法证明了线性自扩散不会影响模型的稳定性.数值模拟计算表明,所得结果正确.
- Abstract:
- In this paper, the stability of a Lotka -Volterra predator - prey model with diffusion and harvesting rate is studied, and the linearization method is used to prove that linear self - diffusion does not affect the stability of the model.The numerical simulation results show that the results are correct.
参考文献/References:
[1] XIAO D, RUAN S.Bogdanov -Takens bifurcations in predator - prey systems with constant - rate harvesting[J].Fields Institute Communications, 1999,21:493 - 506.
[2] GUPTA R P, CHANDRA P.Bifurcation analysis of modified Leslie - Gower predator - prey model with Michaelis - Menten type prey harvesting[J].Journal of Mathematical Analysis & Applications, 2013,398(1):278 - 295.
[3] SEN M, SRINIVASU P D N, BANERJEE M.Global dynamics of an additional food provided predator - prey system with constant harvest in predators[J].Applied Mathematics & Computation, 2015,250:193 - 211.
[4] LEE J, BAEK H.Dynamics of a Beddington - DeAngelis type predator - prey system with constant rate harvesting[J].Electronic Journal of Qualitative Theory of Differential Equations, 2017,2017(1):1 - 20.
[5] JANA S, GURIA S, DAS U, et al.Effect of harvesting and infection on predator in a prey - predator system[J].Nonlinear Dynamics, 2015,81(1/2):1 - 14.
[6] BAEK H.Spatiotemporal dynamics of a predator - prey system with linear harvesting rate[J].Mathematical Problems in Engineering, 2014,2014(3):1 - 9.
[7] WEI C, CHEN L.Periodic solution and heteroclinic bifurcation in a predator - prey system with Allee effect and impulsive harvesting[J].Nonlinear Dynamics, 2014,76(2):1109 - 1117.
[8] TULUMELLO E, LOMBARDO M C, SAMMARTINO M.Cross - Diffusion driven instability in a predator - prey system with Cross - Diffusion[J].Acta Applicandae Mathematicae, 2014,132(1):621 - 633.
[9] FARIA T.Hopf bifurcation for a delayed predator - prey model and the effect of diffusion[J].Birkhäuser Boston, 2001,254(2):433 - 463.
[10] 许生虎,伏升茂.带Beddington - DeAngelis功能反应项的捕食者- 食饵扩散模型的稳定性[J].应用数学,2008,25(2):311 - 319.
[11] 伏升茂,李红金.一类食饵带传染病的捕食者- 食饵扩散模型的稳定性[J].西北师范大学学报(自然科学版),2009,6(1):178 - 187.
[12] 吴耀冲,温洁嫦.一类带时滞和收获率的捕食者- 食饵系统的稳定性[J].佛山科学技术学院学报,2021,91(4):421 - 429.
相似文献/References:
[1]张丽丽.一类具有常数收获率的捕食者-食饵系统的Turing不稳定性[J].延边大学学报(自然科学版),2018,44(04):306.
ZHANG Lili.The Turing instability in a class of predator-prey system with
constant harvesting rate[J].Journal of Yanbian University,2018,44(04):306.
备注/Memo
收稿日期: 2022-03-24
基金项目: 甘肃省高等学校创新基金(2021B -262)
作者简介: 张丽丽(1985—),女,硕士,讲师,研究方向为生物数学与偏微分方程.