PIAO Yongjie.F- quasi contractive conditions and unique fixed points on multiplicative metric spaces[J].Journal of Yanbian University,2022,(04):283-288.
乘积度量空间上的F- 拟压缩条件和唯一不动点
- Title:
- F- quasi contractive conditions and unique fixed points on multiplicative metric spaces
- 文章编号:
- 1004-4353(2022)04-0283-06
- 分类号:
- O177.91;O189.11
- 文献标志码:
- A
- 摘要:
- 通过引进一个五元函数类F, 在乘积度量空间上定义了F- 拟压缩的概念,给出了在完备乘积度量空间上满足F- 拟压缩条件映射的唯一不动点定理及其相应定理.同时,通过给出1个注记和1个实例说明了所得定理的正确性和价值.
- Abstract:
- The concept of F- quasi contractions is defined on multiplicative metric spaces by introducing a 5 -dimensional function class F, and the unique fixed point theorems for mappings satisfying F- quasi contractive conditions and the corresponding fixed point theorems are given on complete multiplicative metric spaces. Finally, a remark and an example are given to illustrate the value and correctness of the given theorem.
参考文献/References:
[1] BANACH S.Sur les opérations dans les ensembles abstraist et leur application aux équations inégrales[J].Fundam Math, 1922,3:138 - 181.
[2] C'iric' L J B.A generalizaion of Banach' contraction principle[J].Proc Amer Soc, 1974,45:267 - 273.
[3] KUMAM P, NGUYEN V D, SITTHAKERNGKIET K.A generalization of C'iric' fixed point theorems[J].Filomat, 2015,29(7):1549 - 1556.
[4] VALERIU P, ALINA - MIHAELA P.Fixed point theoem of C'iric' type in weak partial metric spaces[J].Filomat, 2017,31(11):3203 - 3207.
[5] XU S Y, RADENOVIC' S.Fixed point theorems of generalized Lipschitz mappings on cone metric spaces over Banach algebras without assumption of normality[J].Fixed Point Theory and Applications, 2014,2014:102.
[6] 许绍元,马超,周作领.具有Banach代数的锥度量空间上拟压缩映射的新的不动点定理[J].中山大学学报(自然科学版),2015,54(4):1 - 4.
[7] 朴勇杰.具有Banach代数的无正规的锥度量空间上拟收缩映射的不动点定理的改进[J].中山大学学报(自然科学版),2018,57(1):63 - 68.
[8] RHAODES B E.Contraction type mappings on a 2 - metric space[J].Mathematische Nachrichten, 1979,91:151 - 155.
[9] PIAO Y J.C'iric' fixed point theorems under c - distance on non - normal cone metric spaces over Banach algebras[J].Adv Fixed Point Theory, 2020,10:5.
[10] BASHIROV A E, KURPLNARA E M, OZYAPLCL A.Multiplicative calculus and its applications[J].J Math Anal Appl, 2008,337:36 - 48.
[11] FLORACK L, ASSEN H V.Multiplicative calculus in biomedical image analysis[J].J Math Imaging Vis, 2012,42(1):64 - 75.
[12] BASHIROV A E, MISIRLI E, TANDOGDU Y, et al.On modeling with multiplicative differential equations[J].Appl Math J Chin Univ Ser B, 2011,26:425 - 438.
[13] OZAVSAR M, CEVIKEL A C.Fixed point of multiplicative contraction mappings on multiplicative metric spaces[J].Applied Mathematics, 2012,3:35 - 39.
[14] HE X, SONG M, CHEN D.Common fixed points for weak commutative mappings on a multiplicative metric space[J].Fixed Point Theory Appl, 2013,4:40 - 48.
[15] KANG S M, KUMAR P, KUMAR S, et al.Common fixed points for compatible mappings and its variants in multiplicative metric spaces[J].Int J Pure Appl Math, 2015,102(2):383 - 406.
[16] JIANG Y, GU F.Common fixed points theorems for four maps satisfying φ - type contractive condition in multiplicative metric space[J].Pure Appl Math, 2017,33(2):185 - 196.
[17] PIAO Y J.Unique common fixed points for four non - continuous mappings satisfying Ψ - implicit contractive condition on non - complete multiplicative metric spaces[J].Adv Fixed Point Theory, 2019,9(2):135 - 145.
[18] 朴勇杰.乘积度量空间上满足σ(γ)- 压缩条件映射的唯一不动点[J].吉林大学学报(理学版),2021,59(3):469 - 474.
[19] 朴勇杰.乘积度量空间上具有唯一不动点的G- 隐式压缩映射[J].延边大学学报(自然科学版),2022,48(1):1 - 5.
[20] 朴勇杰.乘积度量空间上一类隐式压缩映射的唯一不动点[J].吉林大学学报(理学版),2022,60(1):59 - 63.
相似文献/References:
[1]朴勇杰.乘积度量空间上Β- 拟压缩映射的唯一不动点[J].延边大学学报(自然科学版),2021,47(02):101.
PIAO Yongjie.An unique fixed point for B -quasi contractive mappings on multiplicative metric spaces[J].Journal of Yanbian University,2021,47(04):101.
[2]朴勇杰.乘积度量空间上具有唯一不动点的G - 隐式压缩映射[J].延边大学学报(自然科学版),2022,(01):1.
PIAO Yongjie.G - implicit contractive mappings having an unique fixed point on multiplicative metric spaces[J].Journal of Yanbian University,2022,(04):1.
备注/Memo
收稿日期: 2022-10-15
基金项目: 国家自然科学基金(12261091)
作者简介: 朴勇杰(1962—),男(朝鲜族),博士,教授,研究方向为非线性分析和不动点理论.