[1]陈贞,闫明晗.一种改进的灰狼优化算法[J].延边大学学报(自然科学版),2022,(03):250-254.
 CHEN Zhen,YAN Minghan.An improved grey wolf optimization algorithm[J].Journal of Yanbian University,2022,(03):250-254.
点击复制

一种改进的灰狼优化算法

参考文献/References:

[1] MIRJALILI S, MIRJALILI S M, LEWIS A.Grey wolf optimizer[J].Advances in Engineering Software, 2014,69(3):46 - 61.
[2] BIDAR M, KANAN H R, MOUHOUB M, et al.Mushroom reproduction optimization(MRO): a novel nature - inspired evolutionary algorithm[C]//Proceedings of 2018 IEEE Congress on Evolutionary Computation(CEC).Rio de Janeiro, Brazil: IEEE, 2018:1762 - 1771.
[3] KARABOGA D, BASTURK B.A powerful and efficient algorithm for numerical function optimization: artificial bee colony(ABC)algorithm[J].Journal of Global Optimization, 2018,39(3):459 - 471.
[4] RAO R V, SAVSANI V J, VAKHARIA D P.Teaching learning - based optimization:a novel method for constrained mechanical design optimization problems[J].Computer Aided Design, 2011,43(3):303 - 315.
[5] HEIDARI A A, MIRJALILI S, FARIS H, et al.Harris hawks optimization: algorithm and applications[J].Future Generation Computer Systems, 2019,97:849 - 872.
[6] 游晓明,刘升,吕金秋.一种动态搜索策略的蚁群算法及其在机器人路径规划中的应用[J].控制与决策,2017,32(3):552 - 556.
[7] 杜利敏,陈河山,徐扬,等.基于ReliefF和聚类的特征选择方法及其在无线电信号识别中的应用[J].河南大学学报(自然科学版),2014,44(3):347 - 350.
[8] 周文峰,梁晓磊,唐可心,等.具有拓扑时变和搜索扰动的混合粒子群优化算法[J].计算机应用,2020,40(7):1913 - 1918.
[9] SONG H, SULAIMAN M, MOHAMED M.An application of grey wolf optimizer for solving combined economic emission dispatch problems[J].International Review on Modeling and Simulation, 2014,7(5):838 - 844.
[10] GUPTA E, SAXENA A.Robust generation control strategy based on grey wolf optimizer[J].Journal of Electrical Systems, 2015,11(2):174 - 188.
[11] GUHA D, ROY P K, BANERJEE S.Load frequency control of interconnected power system using grey wolf optimization[J].Swarm and Evolutionary Computation, 2016,27:97 - 115.
[12] ZHU A, XU C, LI Z, et al.Hybridizing grey wolf optimization with differential evolution for global optimization and test scheduling for 3D stacked SoC[J].Journal of Systems Engineering and Electronics, 2015,26(2):317 - 328.
[13] 龙文,伍铁斌.协调探索和开发能力的改进灰狼优化算法[J].控制与决策,2017,32(10):1749 - 1757.
[14] 徐松金,龙文.嵌入遗传算子的改进灰狼优化算法[J].兰州理工大学学报,2016,42(4):102 - 108.
[15] 郭振洲,刘然,拱长青,等.基于灰狼算法的改进研究[J].计算机应用研究,2017,34(12):3603 - 3610.
[16] 张悦,孙惠香,魏政磊,等.具有自适应调整策略的混沌灰狼优化算法[J].计算机科学,2017,44(11): 119 - 122.

备注/Memo

收稿日期: 2021-09-26
基金项目: 福建省自然科学基金(2019J01814); 莆田学院校级科研项目(2022033)
作者简介: 陈贞(1977—),女,硕士,副教授,研究方向为智能系统与模式识别、图像处理.

更新日期/Last Update: 2022-11-01