MENG Jiale.Global existence of one - dimensional semilinear hyperbolic systems and standing wave solution[J].Journal of Yanbian University,2022,(03):213-216.
一维半线性双曲系统解的整体存在性和驻波解
- Title:
- Global existence of one - dimensional semilinear hyperbolic systems and standing wave solution
- 文章编号:
- 1004-4353(2022)03-0213-04
- 分类号:
- O175.29
- 文献标志码:
- A
- 摘要:
- 研究了一维空间中的半线性双曲系统初值问题的一类具有特殊形式的解.当方程{tU+xU+mV=-αUVtV-xV-mU=β U2的常数α=β时,利用先验估计得到了方程的解具有整体存在性,同时通过求解常微分方程得到了方程的驻波解.另外,对方程的通解进行了讨论.
- Abstract:
- A kind of solutions with special form for the initial value problem of semilinear hyperbolic system in one dimensional space are studied.When the constant of equation {tU+xU+mV=-αUVtV-xV-mU=β U2satisfies α=β, the global existence of the solution of equation is obtained by using a priori estimation, and the standing wave solution of equation is obtained by solving the ordinary differential equation.In addition, the general solution of equation is discussed.
参考文献/References:
[1] AREGBA-DRIOLLET D, HANOUZET B.Cauchy problem for one - dimensional semilinear hyperbolic systems: global existence, blow up[J].Journal of Differential Equations, 1996,125(1):1 - 26.
[2] GOLSE F, SALVARANI F.The nolinear diffusion limit for generalized Carleman models: the initial - boundary value problem[J].Nolinearity, 2007,20(4):927 - 942.
[3] ILLNER R, REED M C, NEUNZERT H.The decay of solutions of the Carleman model[J].Mathematical Methods in the Applied Sciebces, 2015,3(1):121 - 127.
[4] STEEB W H, EULER N.Painleve test of the Mckean and Carleman models[J].Mathematical Physics,1987,14(2):99 - 104.
[5] WICK J, NEUNZERT H.Two classe of explicit solutions of the Carleman model[J].Mathematical Methods in the Applied Sciences, 2011,6(1):515 - 519.
[6] SCHMITT K J.N - particle correlations in the Mckean model[J].Journal of Statistical Physics, 1987,46(1/2):283 - 302.
[7] PAVEL L.Classical solutions in Sobolev spaces for a class of hyperbolic Lotka - Volterra systems[J].SIAM Journal on Control and Optimization, 2013,51(3):2132 - 2151.
备注/Memo
收稿日期: 2022-07-12
作者简介: 孟嘉乐(1999—),男,硕士研究生,研究方向为偏微分方程理论及其应用.
文章编号: 1004-4353(2022)03-0213-04