[1]李梦恩,韩有攀.鲁棒多目标优化问题ε - 拟弱有效解的最优性条件[J].延边大学学报(自然科学版),2022,(03):196-204.
 LI Mengen,HAN Youpan.Optimality conditions for ε - quasi - weakly efficient solutions of robust multiobjective optimization problem[J].Journal of Yanbian University,2022,(03):196-204.
点击复制

鲁棒多目标优化问题ε - 拟弱有效解的最优性条件

参考文献/References:

[1] CHUONG T D.L - invex - infine functions and applications[J].Nonlinear Analysis, 2012,75(13):5044 - 5052.
[2] 杨铭,李林廷,高英.多目标优化问题鲁棒有效解与真有效解之间的关系[J].应用数学和力学,2019,40(12):1364 - 1372.
[3] LEE G M, KIM G S, DINH N.Optimality conditions for approximate solutions of convex semi - infinite vector optimization problems[J].Recent Developments in Vector Optimization, 2012,1:275 - 295.
[4] LEE J H, LEE G M.On ε- solutions for convex optimization problems with uncertainty data[J].Positivity, 2012,16:509 - 526.
[5] CHUONG T D, KIM D S.Nonsmooth semi - infifinite multiobjective optimization problems[J].Journal of Optimization Theory and Applications, 2014,160:748 - 762.
[6] CHUONG T D, KIM D S.Optimality conditions and duality in nonsmooth multiobjective optimization problems[J].Annals of Operations Research, 2014,217:117 - 136.
[7] CHUONG T D, KIM D S.Approximate solutions of multiobjective optimization problems[J].Positivity, 2016,20:187 - 207.
[8] CHUONG T D.Optimality and duality for robust multiobjective optimization problems[J].Nonlinear Analysis, 2016,134:127 - 143.
[9] LEE J H, JIAO L.On quasi ε - solution for robust convex optimization problems[J].Optimization Letters, 2017,11(8):1609 - 1622.
[10] 孙祥凯.不确定信息下凸优化问题的鲁棒解刻划[J].数学物理学报,2017,37(2):257 - 264.
[11] 周俊屹,郑霜.鲁棒多目标优化问题的最优性和对偶性[J].重庆工商大学学报(自然科学版),2019,36(1):49 - 53.
[12] 龚田甜.非光滑多目标规划鲁棒解的最优性条件和鞍点定理[D].银川:北方民族大学,2020.
[13] CHUONG T D.Robust optimality and duality in multiobjective optimization problems under date uncertainty[J].SIAM Journal on Optimization, 2020,30(2):1501 - 1526.
[14] 邓光菊.不确定多目标优化问题近似鲁棒解的最优性条件与对偶性[D].重庆:西南大学,2021.
[15] 莫尔杜霍维奇(BORIS S MORDUKHOVICH).变分分析与广义微分I:基础理论[M].赵亚莉,王炳武,钱伟懿,译.北京:科学出版社,2011:268 - 269.
[16] CLARKE F H.Optimization and Nonsmooth Analysis[M].New York: Wiley Press, 1983.
[17] CHUONG T D, KIM D S.Normal regularity for the feasible set of semi - infinite multiobjective optimization problems with applications[J].Annals of Operations Research, 2018,267:81 - 99.
[18] BONNANS J F, SHAPIRO A.Perturbation Analysis of Optimization Problems[M].New York: Springer - Verlag, 2020.
[19] IOFFE A D, TIHOMIROV V M.Theory of Extremal Problems[M].Amsterdam - New York:North - Holland Publishing Company, 1979.

备注/Memo

收稿日期: 2022-06-27
基金项目: 国家自然科学基金(11501434); 陕西省自然科学基金(2022JQ006)
第一作者: 李梦恩(1998—),女,硕士研究生,研究方向为最优化理论.
通信作者: 韩有攀(1980—),男,博士,副教授,研究方向为金融优化、集值优化及传统优化理论.

更新日期/Last Update: 2022-11-01