SUN Liu,TAO Yuanhong,LI Jiangpeng.Calculation of quantum coherence for two - dimensional quantum state[J].Journal of Yanbian University,2022,(02):107-111.
二维量子态的相干值计算
- Title:
- Calculation of quantum coherence for two - dimensional quantum state
- 文章编号:
- 1004-4353(2022)02-0107-05
- 分类号:
- O177.3
- 文献标志码:
- A
- 摘要:
- 利用单量子比特混合态的Bloch球表示法给出7种常见的相干度量(l1范数相干度量、l(-overp)范数相干度量((-overp)≥2)、 相对熵相干度量、 Tsallis - α相对熵相干度量、 R233;nyi - α相对熵相干度量、 α - 亲和度相干度量和斜信息相干度量)下二维量子态的相干值解析表达式及其取值范围.该研究结果可为研究单量子比特系统上的不同相干度量的序关系提供参考.
- Abstract:
- Using the Bloch sphere representation of single - qubit mixed states, the analytical expressions and value ranges of coherence values of two - dimensional quantum states under seven common coherence measures are given(l1- norm coherence measure, l(-overp)- norm coherence measure((-overp)≥2), relative entropy coherence measure, Tsallis - α relative entropy coherence, R233;nyi - α relative entropy coherence, α - affinity coherence measureand skew information coherence measure), the research results can provide a reference for studying the order relationship of different coherence measures in single - qubit system.
参考文献/References:
[1] HU M L, HU X Y, WANG J C, et al.Quantum coherence and geometric quantum discord[J].Phys Rep, 2018,762:56 - 74.
[2] ABERG J.Catalytic coherence[J].Phys Rev Lett, 2014,113:150402.
[3] SHAO L H, XI Z J, FAN H, et al.The fidelity and trace norm distances for quantifying coherence[J].Phys Rev A, 2015,91:042120.
[4] STRELTSOV A, SINGH U, DHAR H S, et al.Measuring quantum coherence with entanglement[J].Phys Rev Lett, 2015,115:020403.
[5] LIU C L, ZHANG D J, YU X D, et al.A new coherence measure based on fidelity[J].Quant Inf Proc, 2017,16:1-10.
[6] ZHANG H J, CHEN B, LI M, et al.Estimation on geometric measure of quantum coherence[J].Commun Theor Phys, 2017,67:166 - 170.
[7] CHEN B, FEI S M.Notes on modified trace distance measure of coherence[J].Quant Inf Proc, 2018,17:1 - 9.
[8] NIELSEN M A, CHUANG I L.Quantum Computation and Quantum Information[M].London: Cambridge University Press, 2010:1 - 15.
[9] BAI Z F, DU S P.Maximally coherent states[J].Quantum Information & Computation, 2015[2022-01-12].https://doi.org/10.48550/arXiv.1503.07103.
[10] BAUMGRATZ T, CRAMER M, PLENIO M B.Quantifying coherence[J].Phys Rev Lett, 2014,113(14):140401.
[11] ZHANG F G, SHAO L H, LUO Y, et al.Ordering states with Tsallis relative α - entropies of coherence[J].Quant Inf Proc, 2017,16:1 - 17.
[12] SHAO L H, LI Y M, LUO Y, et al.Quantum coherence quantifiers based on the Rényi α - relative entropy[J].Commun Theor Phys, 2017,67(6):631 - 636.
[13] XIONG C H, Kumar A, WU J D.Family of coherence measures and duality between quantum coherence and path distinguishability[J].Phys Rev A, 2018,98:032324.
[14] YU C S.Quantum coherence via skew information and its polygamy[J].Phys Rev A, 2017,95:042337.
备注/Memo
收稿日期: 2022-04-25
基金项目: 国家自然科学基金(11761073)
第一作者: 孙柳(1998—),女,硕士研究生,研究方向为泛函分析及其应用、量子信息.
通信作者: 陶元红(1973—),女,博士,教授,研究方向为泛函分析及其应用、量子信息.