LI Jiamin,DING Xiaoli,WANG Miaomiao.Waveform relaxation method for fractional neutral stochastic delay differential equations[J].Journal of Yanbian University,2022,(02):100-106.
分数阶中立型随机时滞微分方程的波形松弛方法
- Title:
- Waveform relaxation method for fractional neutral stochastic delay differential equations
- 文章编号:
- 1004-4353(2022)02-0100-07
- 关键词:
- 分数阶中立型随机时滞微分方程; 波形松弛法; 收敛性分析; 数值模拟
- Keywords:
- fractional neutral stochastic delay differential equations; waveform relaxation method; convergence analysis; numerical simulation
- 分类号:
- O241.81;O242.26
- 文献标志码:
- A
- 摘要:
- 针对大多数分数阶中立型随机时滞微分方程无法给出精确解的问题,给出了方程的一种数值解法.该方法首先将波形松弛方法推广到具有常延迟项的分数阶中立型随机微分方程,然后在分裂函数满足Lipschliz条件下证明了波形松弛方法在均方意义下收敛.数值模拟表明,波形松弛方法可用于求解分数阶中立型随机时滞微分方程.
- Abstract:
- In order to solve the problem that most fractional neutral stochastic delay differential equations cannot give exact solutions, a numerical method is presented. The waveform relaxation method is extended to fractional neutral stochastic differential equations with constant delay terms, and then it is proved that the waveform relaxation method converges in the mean square sense under the Lipschliz condition of splitting function.Numerical simulation shows that the waveform relaxation method can be used to solve fractional neutral stochastic delay differential equations.
参考文献/References:
[1] 张艳敏.时间分数阶中立型时滞微分方程的数值解法[J].山东理工大学学报(自然科学版),2014,28(4):25 - 27.
[2] 杨水平.一类分数阶中立型延迟微分方程的渐近稳定性[J].应用数学学报,2016,39(5):719 - 733.
[3] 张玉峰,张志信,蒋威,等.分数阶中立型时滞微分方程解的存在性及通解[J].合肥工业大学学报(自然科学版),2017,40(9):1294 - 1296.
[4] DING X L, NIETO J J.Analysis and numerical solutions for fractional stochastic evolution equations with almost sectorial operators[J].Journal of Computational and Nonlinear Dynamics, 2019,14(9):1 - 12.
[5] 王子丰,尤苏蓉.中立型随机泛函微分方程截断Euler - Maruyama数值解的均方指数稳定分析[J].东华大学学报(自然科学版),2021,47(1):125 - 130.
[6] 王苗苗,丁小丽,李佳敏.分数阶随机时滞微分方程解的存在唯一性[J].西安工程大学学报,2021,35(2):104 - 110.
[7] DING X L, JIANG Y L.Semilinear fractional differential equations based on a new integral operator approach[J].Communications in Nonlinear Science and Numerical Simulation, 2012,17(12):5143 - 5150.
备注/Memo
收稿日期: 2022-04-22
基金项目: 陕西省科技厅创新推动人才项目(2019KJXX- 032)
第一作者: 李佳敏(1983—),女,硕士研究生,研究方向为微分方程的基本理论、数值计算方法及其应用.
通信作者: 丁小丽(1983—),女,博士,教授,研究方向为微分方程的基本理论、数值计算方法及其应用.