[1]刘云萍,金海兰.一类具强内射的正则环[J].延边大学学报(自然科学版),2022,(01):37-40.
 LIU Yunping,JIN Hailan.The regular rings with strongly injective[J].Journal of Yanbian University,2022,(01):37-40.
点击复制

一类具强内射的正则环

参考文献/References:

[1] YUE C M.On(von Neumann)regular rings[J].Proceedings of the Edinburgh Mathematical Society, 1974,19(1): 89 - 91.
[2] 赵良.关于环的正则性研究[D].兰州:西北师范大学,2005.
[3] 鲁琦,殷晓斌,鲍宏伟.EP- 内射性与环的von Neumann正则性[J].山东大学学报(理学版),2014,49(10):33 - 37.
[4] 鲁琦,李娜.模和环的small- 内射性的一些研究[J].辽宁师范大学学报(自然科学版),2020,43(3):294 - 297.
[5] HONG C Y, KIM N K, LEE Y.On rings whose homomorphic images are p - injective[J].Communications in Algebra, 2002,30(1):261 - 271.
[6] NICHOLSON W K, YOUSIF M F.On completely principally injective rings[J].Bulletin of the Australian Mathematical Society, 1994,49(3):513 - 518.
[7] ARMENDARIZ E P.Review: Von Neumann regular rings[J].Bulletin of the American Mathematical Society, 1980,3(1):752 - 757.
[8] IKEDA M, NAKAYAMA T.On some characteristic properties of quasi - Frobenius and regular rings[J].Proceedings of the American Mathematical Society, 1954,5(1):15 - 19.
[9] HUNGERFORD T W.Algebra[M].New York: Springer - Verlag, 1980.
[10] HUH C, JANG S H, KIM C O, et al.Rings whose maximal one - sided ideals are two - sided[J].Bulletin of the Korean Mathematical Society, 2002,39(3):411 - 422.

备注/Memo

收稿日期: 2021-10-17
第一作者: 刘云萍(1997—),女,硕士研究生,研究方向为代数学(环论).
通信作者: 金海兰(1963—),女,理学博士,教授,研究方向为代数学(环论).

更新日期/Last Update: 2022-04-20