[1]吴丽萍.一类具反馈控制的偏利模型平衡点的稳定性[J].延边大学学报(自然科学版),2022,(01):30-36.
 WU Liping.Stability of the equilibrium for a commensal symbiosis model with feedback controls[J].Journal of Yanbian University,2022,(01):30-36.
点击复制

一类具反馈控制的偏利模型平衡点的稳定性

参考文献/References:

[1] 孙广才,孙欢.两种群共生关系的模型分析[J].渭南师范学院学报,2013,28(9):5 - 8.
[2] HAN R Y, CHEN F D.Global stability of a commensal symbiosis model with feedback controls[J].Communications in Mathematical Biology and Neuroscience, 2015(2015):1 - 10.[2021- 05-20].http://scik.org/index.php/cmbn/article/view/2125.
[3] CHEN F D.Permanence of a discrete N - species cooperation system with time delays and feedback controls[J].Applied Mathematics and Computation, 2007,186:23 - 29.
[4] CHEN J H, WU R X.A commensal symbiosis model with non - monotonic functional response[J].Communications in Mathematical Biology and Neuroscience, 2017(2017):1 - 8.[2021-04-21].http://scik.org/index.php/cmbn/article/view/2839.
[5] TANG S Y, CHEN L S.Density - dependent birth rate, birth pulses and their population dynamic consequences[J].Journal of Mathematical Biology, 2002,44(2):185 - 199.
[6] CHEN F D, XUE Y L, LIN Q F, et al.Dynamic behaviors of a Lotka - Volterra commensal symbiosis model with density dependent birth rate[J].Advances in Difference Equations, 2018,2018(1):296.
[7] 陈兰荪,宋新宇,陆征一.数学生态学模型与研究方法[M].成都:四川科学技术出版社,2003:92 - 99.

相似文献/References:

[1]张杰华.具时滞和反馈控制的离散互惠系统的概周期解[J].延边大学学报(自然科学版),2016,42(02):108.
 ZHANG Jiehua.Almost periodic solutions of a delayed discrete mutualism model with feedback controls[J].Journal of Yanbian University,2016,42(01):108.
[2]余胜斌.具反馈控制和Holling-III的修正Leslie-Gower捕食系统的持久性[J].延边大学学报(自然科学版),2018,44(01):49.
 YU Shengbin.Permanence of a modified Leslie-Gower model withHolling-type III and feedback controls[J].Journal of Yanbian University,2018,44(01):49.

备注/Memo

收稿日期: 2021-12-17
基金项目: 福建省自然科学基金(2021J011032)
作者简介: 吴丽萍(1972—),女,硕士,副教授,研究方向为生物数学.

更新日期/Last Update: 2022-04-20