FANG Kan,ZENG Huaijie,CHEN Xiaoying.Dynamics of the Leslie - Gower model with Allee effect in predator[J].Journal of Yanbian University,2022,(01):25-29,40.
具有捕食者Allee效应的Leslie - Gower模型的动力学分析
- Title:
- Dynamics of the Leslie - Gower model with Allee effect in predator
- 文章编号:
- 1004-4353(2022)01-0025-06
- 关键词:
- Leslie - Gower模型; Allee效应; 稳定性; 捕食者; 一致有界
- Keywords:
- Leslie - Gower model; Allee effect; stability; predator; uniformly bounded
- 分类号:
- O175.12
- 文献标志码:
- A
- 摘要:
- 研究了在Leslie - Gower模型中加入捕食者Allee效应后的模型动力学行为变化.研究表明:加入捕食者Allee效应后,模型的所有正解是一致有界的,唯一的正平衡点是全局渐近稳定的,但两个边界平衡点是不稳定的.Allee效应虽然不会改变正平衡点的稳定性,但其延长了正平衡点趋向稳定状态的时间,同时也改变了原点的性态,即Allee效应不利于系统的稳定性.
- Abstract:
- Dynamic behaviors of the Leslie - Gower model with Allee effect in predator are studied to show the influence of Allee effect.It is shown that positive solutions of this system are all uniformly bounded, and the only positive equilibrium of the system is globally asymptotically stable while the two boundary equilibrium points are all unstable with the Allee effect.The result indicates that Allee effect doesn't change the stability of the positive equilibrium but makes the system take a longer time to reach its steady - state solution, and it also changes the dynamic behaviors of the original point, which is to say that the Allee effect makes the system become unstable.
参考文献/References:
[1] KOROBEINIKOV A.A Lyapunov function for a Leslie - Gower models[J].Applied Mathematics Letters, 2001,14:697 - 699.
[2] 李忠.具反馈控制修正Leslie - Gower和Holling - Ⅱ功能性反应捕食系统的持久性和全局吸引性[J].数学的实践与认识,2011,41(7):126 - 130.
[3] 陈江彬.具反馈控制和Holling - Ⅲ类功能反应的修正Leslie - Gower捕食系统研究[J].延边大学学报(自然科学版),2017,43(3):189 - 194.
[4] LIN Q F.Stability analysis of a single species Logistic model with Allee effect and feedback control[J].Advances in Different Equations, 2018,2018:190.
[5] 方侃,陈晓英.具有Allee效应单种群反馈控制模型的动力学分析[J].闽南师范大学学报(自然科学版),2021,34(3):39 - 45.
[6] 黄小燕,陈凤德.Allee效应对阶段结构单种群模型的动力学行为影响[J].福州大学学报(自然科学版),2020,48(2):135 - 139.
[7] 关新宇,谢向东.Allee效应对单种群模型的动力学行为影响研究[J].生物数学学报(自然科学版),2019,34(1):140 - 144.
[8] ZHU Z L, HE M X, LI Z, et al.Stability and bifurcation in a Logistic model with Allee effect and feedback control[J].International Journal of Bifurcation and Chaos, 2020,30(15):2050231.
[9] LÜ Y Y, CHEN L J, CHEN F D, et al.Stability and bifurcation in an Si Epidemic model with additive Allee effect and time delay[J].International Journal of Bifurcation and Chaos, 2021,31(4):2150060.
[10] GUAN X Y, CHEN F D.Dynamical analysis of a two species amensalism model with Beddington - DeAngelis functional response and Allee effect on the second species[J].Nonlinear Analysis: Real World Applications, 2019,48:71 - 93.
[11] 张芷芬,丁同仁,黄文灶,等.微分方程定性理论[M].北京:科学出版社,1985:49 - 158.
[12] CHEN F D.On a nonlinear non - autonomous predator - prey model with diffusion and distributed delay[J].Applied Mathematics and Computation, 2005,180(1):33 - 49.
备注/Memo
收稿日期: 2021-12-13
基金项目: 福建省自然科学基金面上项目(2019J01651); 福建省教育厅中青年项目(JAT191099)
第一作者: 方侃(1982—),女,硕士,讲师,研究方向为生物数学.
通信作者: 曾怀杰(1983—),男,硕士,讲师,研究方向为生物数学.