[1]方侃,曾怀杰,陈晓英.具有捕食者Allee效应的Leslie - Gower模型的动力学分析[J].延边大学学报(自然科学版),2022,(01):25-29,40.
 FANG Kan,ZENG Huaijie,CHEN Xiaoying.Dynamics of the Leslie - Gower model with Allee effect in predator[J].Journal of Yanbian University,2022,(01):25-29,40.
点击复制

具有捕食者Allee效应的Leslie - Gower模型的动力学分析

参考文献/References:

[1] KOROBEINIKOV A.A Lyapunov function for a Leslie - Gower models[J].Applied Mathematics Letters, 2001,14:697 - 699.
[2] 李忠.具反馈控制修正Leslie - Gower和Holling - Ⅱ功能性反应捕食系统的持久性和全局吸引性[J].数学的实践与认识,2011,41(7):126 - 130.
[3] 陈江彬.具反馈控制和Holling - Ⅲ类功能反应的修正Leslie - Gower捕食系统研究[J].延边大学学报(自然科学版),2017,43(3):189 - 194.
[4] LIN Q F.Stability analysis of a single species Logistic model with Allee effect and feedback control[J].Advances in Different Equations, 2018,2018:190.
[5] 方侃,陈晓英.具有Allee效应单种群反馈控制模型的动力学分析[J].闽南师范大学学报(自然科学版),2021,34(3):39 - 45.
[6] 黄小燕,陈凤德.Allee效应对阶段结构单种群模型的动力学行为影响[J].福州大学学报(自然科学版),2020,48(2):135 - 139.
[7] 关新宇,谢向东.Allee效应对单种群模型的动力学行为影响研究[J].生物数学学报(自然科学版),2019,34(1):140 - 144.
[8] ZHU Z L, HE M X, LI Z, et al.Stability and bifurcation in a Logistic model with Allee effect and feedback control[J].International Journal of Bifurcation and Chaos, 2020,30(15):2050231.
[9] LÜ Y Y, CHEN L J, CHEN F D, et al.Stability and bifurcation in an Si Epidemic model with additive Allee effect and time delay[J].International Journal of Bifurcation and Chaos, 2021,31(4):2150060.
[10] GUAN X Y, CHEN F D.Dynamical analysis of a two species amensalism model with Beddington - DeAngelis functional response and Allee effect on the second species[J].Nonlinear Analysis: Real World Applications, 2019,48:71 - 93.
[11] 张芷芬,丁同仁,黄文灶,等.微分方程定性理论[M].北京:科学出版社,1985:49 - 158.
[12] CHEN F D.On a nonlinear non - autonomous predator - prey model with diffusion and distributed delay[J].Applied Mathematics and Computation, 2005,180(1):33 - 49.

备注/Memo

收稿日期: 2021-12-13
基金项目: 福建省自然科学基金面上项目(2019J01651); 福建省教育厅中青年项目(JAT191099)
第一作者: 方侃(1982—),女,硕士,讲师,研究方向为生物数学.
通信作者: 曾怀杰(1983—),男,硕士,讲师,研究方向为生物数学.

更新日期/Last Update: 2022-04-20