[1]姚富霞.基于Crank - Nicolson差分法的KdVB方程有限元解的误差分析[J].延边大学学报(自然科学版),2022,(01):19-24.
 YAO Fuxia.Error analysis of finite element solution of KdVB equation based on Crank - Nicolson difference method[J].Journal of Yanbian University,2022,(01):19-24.
点击复制

基于Crank - Nicolson差分法的KdVB方程有限元解的误差分析

参考文献/References:

[1] SAKA B, DA D.Quartic B - spline Galerkin approach to the numerical solution of the KdVB equation[J].Applied Mathematics & Computation, 2009,215(2):746 - 758.
[2] JOHNSON R S.A nonlinear equation incorporating damping and dispersion[J].J Fluid Mech, 1970,42:49 - 60.
[3] BONA J L, SCHONBEK M E.Travelling wave solutions to the Korteweg - de Vries - Burgers equation[J].Proceedings of the Royal Society of Edinburgh, 1985,101(3/4):207 - 226.
[4] ZAKI S I. A quintic B - spline finite elements scheme for the KdVB equation[J].Computer Methods in Applied Mechanics & Engineering, 2000,188(1/3):121 - 134.
[5] SAHU B, ROYCHOUDHURY R.Travelling wave solution of Korteweg - de Vries - Burger's equation[J].Czechoslovak Journal of Physics, 2003,53(6):517 - 527.
[6] DEMIRAY H.A travelling wave solution to the KdV - Burgers equation[J].Applied Mathematics and Computation Elsevier, 2004,154:665 - 670.
[7] HELAL M A, MEHANNA M S.A comparison between two different methods for solving KdV - Burgers equation[J].Chaos Solitons & Fractals, 2006,28(2):320 - 326.
[8] 郭瑞,王周峰,王振华.Kdv浅水波方程的Crank - Nicolson差分格式[J].河南科技大学学报(自然科学版),2012,33(2):70 - 74.
[9] 潘悦悦,吴立飞,杨晓忠.Burgers - Fisher方程改进的交替分段Crank - Nicolson并行差分方法[J].高校应用数学学报A辑,2021,36(2):193 - 207.
[10] GRAD H, HU P N.Unified shock profile in a plasma[J].The Physics of Fluids, 1967,10(12):2596 - 2602.
[11] ROSENAU P.A Quasi - Continuous description of a nonlinear transmission line[J].Physica Scripta, 1986,34(6B):827.
[12] KUNISCH K, VOLKWEIN S.Galerkin proper orthogonal decomposition methods for parabolic problems[J].Numerische Mathematik, 2001,90:117 - 148.
[13] 赵锦玮,朴光日.Navier - Stokes系统降维模型中线性反馈控制的分析与逼近[J].延边大学学报(自然科学版),2020,46(4):295 - 301.

备注/Memo

收稿日期: 2021-11-13
作者简介: 姚富霞(1996—),女,硕士研究生,研究方向为数值计算.

文章编号: 1004-4353(2022)01-0019-06

更新日期/Last Update: 2022-04-20