MEI Ling,GOU Shuangquan.Application of weighted median filtering algorithm in denoise of magnetic resonance imaging[J].Journal of Yanbian University,2021,47(04):365-369.
一种加权中值滤波算法在医学磁共振图像去噪中的应用
- Title:
- Application of weighted median filtering algorithm in denoise of magnetic resonance imaging
- 文章编号:
- 1004-4353(2021)04-0365-05
- Keywords:
- image denoising; weighted median algorithm; MRI; threshold value
- 分类号:
- TN911.7; TP391.4
- 文献标志码:
- A
- 摘要:
- 为了更好地去除医学磁共振图像(MRI)中的高密度椒盐噪声和高斯噪声,提出了一种加权中值滤波算法.该算法的核心思想是利用改良的有限阈值策略对滤波窗口的每个像素点的灰度值与计算该像素点所得的相应权值之积进行求和,然后将运算结果作为滤波窗口中心点的输出值.利用该算法对含有高密度椒盐噪声和高斯噪声的医学MRI进行去噪仿真实验表明,该算法对高密度椒盐噪声和高斯噪声的抑制力显著优于单纯的中值算法和均值算法,且去噪后的图像具有良好的细节保真度和清晰度.
- Abstract:
- In order to better remove high - density salt and pepper noise, and Gaussian noise in medical magnetic resonance images(MRI), a weighted median filtering algorithm is proposed.The main idea of the method is to weight the gray scale value of each pixel in the filtered window against the corresponding weights product computed at the pixel point by using a modified finite threshold strategy, and then takes the operation result as the output value of the central point of the filter window. Medical MRI containing high - density salt and pepper noise, and Gaussian noise was noise - removed using a weighted median filtering algorithm.Simulation experiments show that proposed algorithm is highly stable, and the inhibitory force of both high - density pretzel noise and Gaussian noise in the medical MRI significantly outperforms the simple median and mean algorithm, and the denoised image has good detail fidelity and clarity.
参考文献/References:
[1] 曾瀚林,孟祥勇,钱惟贤.高斯差分滤波图像融合方法[J].红外与激光工程,2020,49(S1):168 - 176.
[2] 陈军.基于维纳滤波算法的医学影像图像除噪分析研究[J].辽宁大学学报(自然科学版),2019,46(1):45 - 50.
[3] 韩涛,孙科.自适应中心加权的改进均值滤波算法[J].通信技术,2019,52(1):86 - 90.
[4] 林昌,周海峰,陈武.基于双边滤波的高斯金字塔变换Retinex图像增强算法[J].激光与光电子学进展,2020,57(16):209 - 215.
[5] 陈家益,董梦艺,战荫伟,等.多邻域中值滤波算法在医学图像中的应用[J].暨南大学学报(自然科学与医学版),2019,40(1):85 - 94.
[6] 陈军.基于小波分析的医学影像图像除噪设计及仿真研究[J].贵州大学学报(自然科学版),2020,37(5):78 - 81.
[7] LEE Y H, KASSAM S A.Generalized median filtering and related nonlinear filtering techniques[J].IEEE Transactions on Acoust, 1985,33(3):672 - 683.
[8] 许森,陈伟建.一种去除图像中脉冲噪声的自适应滤波算法[J].成都信息工程学院学报,2007,22(4):423 - 426.
[9] 张雪峰,闫慧.基于中值滤波和分数阶滤波的图像去噪与增强算法[J].东北大学学报(自然科学版),2020,41(4):482 - 487.
[10] 兰霞,刘欣鑫,沈焕锋,等.一种消除高密度椒盐噪声的迭代中值滤波算法[J].武汉大学学报(信息科学版),2017,42(12):1731 - 1737.
[11] 谢维信,赵田.多特征自适应融合的相关滤波目标跟踪算法[J].信号处理,2021,37(4):603 - 615.
[12] 邹永宁,姚功杰.自适应窗口形状的中值滤波[J].光学精密工程,2018,26(12):3028 - 3039.
[13] 马洪晋,聂玉峰.基于二级修复的多方向加权均值滤波算法[J].计算机科学,2018,45(10):250 - 254.
[14] 傅博,吴越楚,王丽妍,等.边缘导向的非局部均值图像滤波[J].吉林大学学报(信息科学版),2020,38(6):687 - 693.
[15] 宋瑞丽,谷芳,孟鸽,等.去椒盐噪声的新型图像复原模型[J/OL].安徽大学学报(自然科学版),2021:1-8[2021-08-26].http://kns.cnki.net/kcms/detail/34.1063.N.20210714.1129.010.html.
[16] 沈德海,侯建,鄂旭,等.一种改进的加权均值滤波算法[J].现代电子技术,2015,38(10):1 - 3.
[17] 邹倩,陆安江,李春红.一种中值滤波和改进阈值函数的图像去噪算法[J].智能计算机与应用,2020,10(8):124 - 126.
[18] 唐超,左文涛,李小飞.结合修剪均值与高斯加权中值的图像去噪算法[J].计算机工程,2021,47(9):210 - 216.
备注/Memo
收稿日期: 2021-09-05
基金项目: 甘肃省高等学校科研项目(2018A -176)
第一作者: 梅玲(1984—),女,学士,副教授,研究方向为计算机科学与技术.
通信作者: 苟双全(1985—),男,硕士,副教授,研究方向为计算机科学技术与图像处理.