OU Yangna,HUANG Liwen.Application of distance discriminant analysis method in product quality control[J].Journal of Yanbian University,2021,47(04):334-339.
距离判别分析法在产品质量控制中的应用
- Title:
- Application of distance discriminant analysis method in product quality control
- 文章编号:
- 1004-4353(2021)04-0334-06
- Keywords:
- distance discriminant analysis method; discriminant rule; statistical process control; product quality; quality control; Monte Carlo method
- 分类号:
- O212.4
- 文献标志码:
- A
- 摘要:
- 为提高多个观测变量的质量监控,在统计过程控制(SPC)方法的基础上提出了一种距离判别分析方法.该方法首先对SPC的过程监控图进行改进,并建立产品质量分类模型; 然后对影响产品质量的因素进行分析,并通过仿真实验测试该方法的效果.仿真实验显示,该方法能较好地将产品质量分为4个等级,且分类正确率优于常见分类方法,因此此方法在产品质量控制中具有良好的应用价值.
- Abstract:
- A distance discriminant analysis method was proposed based on statistical process control(SPC)in order to improve the quality control of multiple observation variables. The method firstly improves the SPC process monitoring chart, then establishes the product quality classification model, analyzes the influencing factors of product quality, and tests the effect of this method through simulation experiments. The results of simulation experiments and comparison with the common classification methods show that the proposed method can divide the product quality into four grades, and the classification accuracy is better than the common classification methods. Therefore, the proposed method has good application value in product quality control.
参考文献/References:
[1] HAJEJ Z, NYOUNGUE A C, ABUBAKAR A S, et al.An integrated model of production, maintenance, and quality control with statistical process control chart of a supply chain[J].Appl Sci, 2021,11(9):4192.
[2] PIMENTA C D, SILVA M B, MARINS F, et al.Application of statistical monitoring using auto - correlated data and with the influence of multicollinearity in a steel process[J].International Journal of Statistics and Probability, 2021,10(4):96 - 118.
[3] VIHAROS Z J, JAKAB R.Reinforcement learning for statistical process control in manufacturing[J].Measurement, 2021,182:109616.
[4] RANAEE V, EBRAHIMZADEH A.Control chart pattern recognition using a novel hybrid intelligent method[J].Applied Soft Computing, 2011,11(2):2676 - 2686.
[5] BERSIMIS S, PSARAKIS S, PANARETOS J.Multivariate statistical process control charts: an overview[J].Quality and Reliability Engineering International, 2007,23(5):517 - 543.
[6] 黄利文.改进的距离判别分析法[J].江南大学学报(自然科学版),2011,10(6):745 - 748.
[7] HUANG L W, SU L T.Hierarchical discriminant analysis and its application[J].Communications in Statistics - Theory and Methods, 2013,42(11):1951 - 1957.
[8] HUANG L W.Modified hybrid discriminant analysis methods and their applications in machine learning[J].Discrete Dynamics in Nature and Society, 2020,2020:1 - 5.
[9] FOODY G M, MATHUR A.Toward intelligent training of supervised image classifications: directing training data acquisition for SVM classification[J].Remote Sensing of Environment, 2004,93(1/2):107 - 117.
[10] KEERTHI S S, SHEVADE S K, BHATTACHARYYA C, et al.Improvements to Platt's SMO algorithm for SVM classifier design[J].Neural Computation, 2014,13(3):637 - 649.
[11] LIU Y, PI D, CHENG Q.Ensemble kernel method: SVM classification based on game theory[J].Journal of Systems Engineering and Electronics, 2016,27(1):251 - 259.
[12] LAM K F, MOY J W.Combining discriminant methods in solving classification problems in two - group discriminant analysis[J].European Journal of Operational Research, 2002,138(2):294 - 301.
[13] HALBE Z, ALADJEM M.Model - based mixture discriminant analysis:an experimental study[J].Pattern Recognition, 2005,38(3):437 - 440.
[14] NAZIF C, EROL H.A new per - field classification method using mixture discriminant analysis[J].Journal of Applied Statistics, 2012,39(10):2129 - 2140.
[15] 姜红,马枭,杜岩.基于判别分析与K近邻算法对塑料吸管的红外光谱分析[J].塑料工业,2020,48(5):122 - 126.
[16] TAN S.Neighbor - weighted K - nearest neighbor for unbalanced text corpus[J].Expert Systems with Applications, 2005,28(4):667 - 671.
[17] 何晓群,罗平.如何提升SPC的可操作性[J].中国统计,2021(3):57 - 58.
备注/Memo
收稿日期: 2021-05-25
基金项目: 福建省先进高分子材料应用技术协同创新中心专项(GFZ202009); 福建省中青年教师教育科研项目(JAT210884)
第一作者: 欧阳娜(1978—),女,硕士,副教授,研究方向为产品分析与检测、功能高分子材料.
通信作者: 黄利文(1979—),男,硕士,副教授,研究方向为数理统计、模式识别.