[1]马瑞,李春花.一类具有位势的二维非线性薛定谔系统解的渐近行为[J].延边大学学报(自然科学版),2021,47(04):283-288.
 MA Rui,LI Chunhua.Asymptotic behavior of solutions to nonlinear Schrdinger systems with potentials in 2D[J].Journal of Yanbian University,2021,47(04):283-288.
点击复制

一类具有位势的二维非线性薛定谔系统解的渐近行为

参考文献/References:

[1] GEORGIEV V, LI C H.On the scattering problem for the nonlinear Schrödinger equation with a potential in 2D[J].Physica D: Nonlinear Phenomena, 2019,398:208 - 218.
[2] KAWAHARA Y, SUNAGAWA H.Global small amplitude solutions for two - dimensional nonlinear Klein - Gordon systems in the presence of mass resonance[J].J Differential Equations, 2011,251(9):2549 - 2567.
[3] LI Z, ZHAO Z F.Decay and scattering of solutions to nonlinear Schrödinger equations with regular potentials for nonlinearities of sharp growth[J].J Math Study, 2017,50(3):277 - 290.
[4] CUCCAGNA S, GEORGIEV V, VISCIGLIA N.Decay and scattering of small solutions of pure power NLS in R with p>3 and with a potential[J].Communications on Pure and Applied Mathematics, 2014,67(2):957 - 981.
[5] HAYASHI N, OZAWA T.Scattering theory in weighted L2(Rn)spaces for some Schrödinger equations[J].Ann Inst H Poincaré Phys Théor, 1988,48(1):17 - 37.
[6] HAYASHI N, LI C H, NAUMKIN P I.On a system of nonlinear Schrödinger equations in 2D[J].Differential Integral Equations, 2011,24(5/6):417 - 434.
[7] KATAYAMA S, LI C H, SUNAGAWA H.A remark on decay rates of solutions for a system of quadratic nonlinear Schrödinger equations in 2D[J].Differential Integral Equations, 2014,27(3/4):301 - 312.
[8] LI C H.On a system of quadratic nonlinear Schrödinger equations and scale invariant spaces in 2D[J].Differential and Integral Equations, 2015,28(3/4):201 - 220.

相似文献/References:

[1]韩琦悦,李春花*.一类非线性薛定谔方程解的衰减估计[J].延边大学学报(自然科学版),2020,46(01):24.
 HAN Qiyue,LI Chunhua*.Decay estimates of solutions to a class of nonlinear Schr?dinger equations[J].Journal of Yanbian University,2020,46(04):24.
[2]郭佳鑫,李春花.二维耗散非线性薛定谔方程解的时间衰减估计[J].延边大学学报(自然科学版),2023,(04):283.
 GUO Jiaxin,LI Chunhua.Time decay estimates of solutions to dissipative nonlinear Schr?dinger equations in two space dimensions[J].Journal of Yanbian University,2023,(04):283.

备注/Memo

收稿日期: 2021-10-08
基金项目: 国家自然科学基金(11461074); 吉林省中青年科技创新领军人才及团队项目(20200301053RQ)
第一作者: 马瑞(1966—),女,在读硕士,研究方向为微分方程及其应用.
通信作者: 李春花(1977—),女(朝鲜族),博士,副教授,研究方向为微分方程及其应用.

更新日期/Last Update: 2021-12-20