PAN Sujuan,LI Shiyin,ZHAO Pei.Deterministic differential game of individual market makers in securities market[J].Journal of Yanbian University,2021,47(03):243-248.
证券市场中庄家与散户间的确定性微分博弈
- Title:
- Deterministic differential game of individual market makers in securities market
- 文章编号:
- 1004-4353(2021)03-0243-06
- 关键词:
- 动态系统; 开环纳什均衡; 反馈纳什均衡; Issacs - Bellman偏微分方程; 确定性微分博弈
- Keywords:
- dynamic system; open - loop Nash equilibrium; feedback Nash equilibrium; Issacs - Bellman partial differential equation; deterministic differential game
- 分类号:
- O225;F830.5
- 文献标志码:
- A
- 摘要:
- 基于确定性微分博弈理论,建立了一种庄家与散户间的连续时间的博弈模型.首先将所有散户作为一个整体与庄家进行博弈,以博弈双方持股率的动态关系作为动态系统方程,并以此构建了一个确定性微分博弈模型; 然后运用开环纳什均衡和反馈纳什均衡分别求解出满足共态函数的常微分方程组和满足价值函数的Issacs - Bellman偏微分方程,以此得到庄家与散户博弈的开环纳什均衡策略和反馈纳什均衡策略.该结果可为金融监管部门监管证券市场和证券市场投资者买卖股票提供参考.
- Abstract:
- Based on the theory of deterministic differential game, a continuous time game model between the dealer and the retail investor is established. Firstly, all retail investors are regarded as a whole to play a game with the makers, and the dynamic relationship of the shareholding ratio of the two sides in the game is regarded as the dynamic system equation; Then, the open - loop Nash equilibrium and the feedback Nash equilibrium are used to solve the ordinary differential equations satisfying the common state function and the Issacs Bellman partial differential equations satisfying the value function, respectively, so as to obtain the open - loop Nash equilibrium strategy and the feedback Nash equilibrium strategy of the game between the dealer and the retail investor. The results can provide a reference for financial regulators to supervise the securities market and investors to buy and sell stocks in the securities market.
参考文献/References:
[1] DOMINIKA M, ANDRZEJ N.Competition in defensive and offensive advertising strategies in a segmented market[J].Eur J Control, 2020,53:98-108.
[2] ZHOU J G, TUR A, PETROSIAN O, et al.Transferable utility cooperative differential games with continuous updating using pontryagin maximum principle[J].Mathematics, 2021,9(2):163.
[3] PUDURU V R, GEORGES Z.Open - loop and feedback Nash equilibria in constrained linear - quadratic dynamic games played over event trees[J].Automatica, 2019,107:162-174.
[4] 程粟粟,易永锡,李寿德.碳捕获与碳封存机制下跨界污染控制微分博弈[J].系统管理学报,2019,28(5):864-872.
[5] ABRAHAM M P, KULKARNI A A.New results on the existence of open loop Nash equilibria in discrete time dynamic games via generalized Nash games[J].Math Meth Operat Res, 2019,89(2):157-172.
[6] 杨荣基,彼得罗项,李颂志.动态合作:尖端博弈论[M].北京:中国市场出版社,2007.
[7] 史蒂文·E 施里夫.金融随机分析:连续时间模型:第2卷[M].陈启宏,陈迪华,译.上海:上海财经大学出版社,2016.
[8] BASAK G K, GHOSH M K, MUKHERJEE D.Equilibrium and stability of a stock market game with big traders[J].Diff Equat Dynam Syst, 2010,17(3):283-299.
[9] 班允浩.合作微分博弈问题研究[D].大连:东北财经大学,2009.
[10] YEUNG D W K, PETROSYAN L A.Cooperative Stochastic Differential Games[M].New York: Springer, 2006.
[11] JORGENSEN S, YEUNG D W K.A strategic concession game[J].Int Game Theory Rev, 1999,1(1):103-129.
相似文献/References:
[1]潘素娟,李时银,赵佩.证券市场中国内外机构投资者共同参与的随机微分博弈[J].延边大学学报(自然科学版),2022,(03):229.
PAN Sujuan,LI Shiyin,ZHAO Pei.Stochastic differential game involving domestic and foreign institutional investors in securities market[J].Journal of Yanbian University,2022,(03):229.
备注/Memo
收稿日期: 2021-03-21
基金项目: 福建省中青年教师教育科研项目(JAT190502); 福建省自然科学基金(2021J011253); 福建商学院教学改革与建设项目(2021JGB08)
作者简介: 潘素娟(1982—),女,硕士,副教授,研究方向为金融工程与金融数学.