[1]伍慧玲.一类Choquard方程的无穷多解[J].延边大学学报(自然科学版),2021,47(03):200-205.
 WU Huiling.Infinitely many solutions for a Choquard equation[J].Journal of Yanbian University,2021,47(03):200-205.
点击复制

一类Choquard方程的无穷多解

参考文献/References:

[1] PEKAR S I.Untersuchungen über die Elektronentheorie der Kristalle[M].Berlin: Akademie Verlag, 1954.
[2] LIEB E H.Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation[J].Stud Appl Math, 1977,57(2):93-105.
[3] PENROSE R.On gravity's role in quantum state reduction[J].Gen Relat Gravit, 1996,28(5):581-600.
[4] JONES K R W.Newtonian quantum gravity[J].Aust J Phys, 1995,48:1055-1081.
[5] LIONS P L.The Choquard equation and related questions[J].Nonlinear Anal, 1980,4(6):1063 -1072.
[6] MOROZ V, VAN SCHAFTINGEN J.Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics[J].J Funct Anal, 2013,265:153-184.
[7] MOROZ V, VAN SCHAFTINGEN J.Existence of ground states for a class of nonlinear Choquard equations[J].Trans Amer Math Soc, 2015,367(9):6557-6579.
[8] LI G D, LI Y Y, LIU X Q, et al.A positive solution of asymptotically periodic Choquard equations with locally defined nonlinearities[J].Commun Pur Appl Anal, 2020,19(3):1351-1365.
[9] ALVES C O, FIGUEIREDO G M, YANG M T.Existence of solutions for a nonlinear Choquard equation with potential vanishing at infinity[J].Adv Nonlinear Anal, 2016,5(4):331-345.
[10] ZHANG H, XU J X, ZHANG F B.Existence and multiplicity of solutions for a generalized Choquard equation[J].Comput Math Appl, 2017,73(8):1804-1814.
[11] CHEN S, TANG X.Ground state solutions for general Choquard equations with a variable potential and a local nonlinearity[J].RACSAM, 2020,114(1):14.
[12] LIEB E H, LOSS M.Analysis, Graduate Studies in Mathematics: Vol.14[M].2nd Edition.Providence, RI: American Mathematical Society, 2001.
[13] BARTSCH T, WANG Z Q, WILLEM M.The Dirichlet Problem for Superlinear Elliptic Equations[M]//Handbook of Differential Equations: Stationary Partial Differential Equations: vol.2.North Holland: Elsevier, 2005:1-55.
[14] ZOU W.Variant fountain theorems and their applications[J].Manuscripta Math, 2001,104:343-358.
[15] WILLEM M.Minimax Theorems[M].Boston: Birkhäuser, 1996.
[16] ZHANG Q, XU B.Multiplicity of solutions for a class of semilinear Schrödinger equations with sign - changing potential[J].J Math Anal Appl, 2011, 377: 834-840.

相似文献/References:

[1]吴燕林,钱晓涛.一类次临界增长非局部问题的无穷多解[J].延边大学学报(自然科学版),2019,45(04):299.
 WU Yanlin,QIAN Xiaotao.Infinitely many solutions for a class of nonlocalproblem with subcritical growth[J].Journal of Yanbian University,2019,45(03):299.

备注/Memo

收稿日期: 2021-05-06
基金项目: 福建省教育厅中青年教师教育科研项目(JAT190614)
作者简介: 伍慧玲(1986—),女,硕士,讲师,研究方向为非线性分析.

更新日期/Last Update: 2021-10-20