[1]朴勇杰.乘积度量空间上Banach - Chaterjia型不动点定理的改进[J].延边大学学报(自然科学版),2021,47(03):189-192,199.
 PIAO Yongjie.Improvements of the Banach - Chaterjia type fixed point theorem on multiplicative metric spaces[J].Journal of Yanbian University,2021,47(03):189-192,199.
点击复制

乘积度量空间上Banach - Chaterjia型不动点定理的改进

参考文献/References:

[1] BASHIROV A E, KURPLNARA E M, OZYAPLCL A.Multiplicative calculus and its applications[J].J Math Anal Appl, 2008,337:36-48.
[2] FLORACK L, ASSEN H V.Multiplicative calculus in biomedical image analysis[J].J Math Imaging Vis, 2012,42(1):64-75.
[3] BASHIROV A E, MISIRLI E, TANDOGDU Y, et al.On modeling with multiplicative differential equations[J].Appl Math J Chin Univ Ser B, 2011,26:425-438.
[4] ÖZAVSAR M, CEVIKEL A C.Fixed point of multiplicative contraction mappings on multiplicative metric spaces[J].Appl Math, 2012,3:35-39.
[5] HE S, SONG M, CHEN D.Common fixed points for weak commutative mappings on amultiplicative metric space[J].Fixed Point Theory Appl, 2013,4:48.
[6] GU F, CHO Y J.Common fixed points results for four maps satisfying φ- Contractive condition in multiplicative metric spaces[J].Fixed Point Theory Appl, 2015,2015:165, DOI 10.1186/s13663-105-0412-4.
[7] 姜云,谷峰.乘积度量空间中满足φ- 型压缩条件的四个映像的公共不动点定理[J].纯粹数学与应用数学,2017,33(2):185-195.
[8] PIAO Y J.Unique common fixed points for four non - continuous mappings satisfying ψ- implicit contractive condition on non - complete multiplicative metric spaces[J].Adv Fixed Point Theory, 2019,9(2):135-145.
[9] BANACH S.Sur les opérations dans les ensembles abstraist et leur application aux équations inégrales[J].Fundam Math, 1922,3:138-181.
[10] 朴勇杰.乘积度量空间上满足σ(γ)- 压缩条件的映射的唯一不动点[J].吉林大学学报(理学版),2021,59(3):469-474.
[11] CHATTERJEA S K.Fixed point theorems[J].C R Acad Bulgare Sci, 1972,25:727-730.

相似文献/References:

[1]吴双,慎闯,侯成敏*.一类分数阶泛函差分边值问题解的存在性[J].延边大学学报(自然科学版),2014,40(01):11.
 WU Shuang,SHEN Chuang,HOU Chengmin*.The existence of solution for a class of fractional functional difference boundary value problem[J].Journal of Yanbian University,2014,40(03):11.
[2]陈树佳,许绍元.锥壳中严格集压缩映射的若干新不动点定理[J].延边大学学报(自然科学版),2014,40(03):211.
 CHEN Shujia,XU Shaoyuan.New fixed point theorems for k-set contractions(k<1)in conical shells[J].Journal of Yanbian University,2014,40(03):211.
[3]徐佳宁,龚学,吴凡,等.一类二阶q-对称差分方程两点边值问题解的存在性[J].延边大学学报(自然科学版),2015,41(03):189.
 XU Jianing,GONG Xue,WU Fan,et al.Existence of solutions for a class of q -symmetric difference equation two points boundary value problem[J].Journal of Yanbian University,2015,41(03):189.
[4]朴勇杰.乘积度量空间上Β- 拟压缩映射的唯一不动点[J].延边大学学报(自然科学版),2021,47(02):101.
 PIAO Yongjie.An unique fixed point for B -quasi contractive mappings on multiplicative metric spaces[J].Journal of Yanbian University,2021,47(03):101.
[5]朴勇杰.乘积度量空间上具有唯一不动点的G - 隐式压缩映射[J].延边大学学报(自然科学版),2022,(01):1.
 PIAO Yongjie.G - implicit contractive mappings having an unique fixed point on multiplicative metric spaces[J].Journal of Yanbian University,2022,(03):1.
[6]朴勇杰.乘积度量空间上的F- 拟压缩条件和唯一不动点[J].延边大学学报(自然科学版),2022,(04):283.
 PIAO Yongjie.F- quasi contractive conditions and unique fixed points on multiplicative metric spaces[J].Journal of Yanbian University,2022,(03):283.

备注/Memo

收稿日期: 2021-08-06
基金项目: 国家自然科学基金(11361064)
作者简介: 朴勇杰(1962—),男,理学博士,教授,研究方向为非线性分析和不动点理论.

更新日期/Last Update: 2021-10-20