CHEN Shijun.Two iterative algorithms for heterogeneous constrained solutions of generalized Riccati matrix equation[J].Journal of Yanbian University,2021,47(02):120-125,130.
广义Riccati矩阵方程异类约束解的两种迭代算法
- Title:
- Two iterative algorithms for heterogeneous constrained solutions of generalized Riccati matrix equation
- 文章编号:
- 1004-4353(2021)02-0120-06
- 关键词:
- Riccati矩阵方程; 修正共轭梯度算法; 非精确牛顿算法; 正交投影算法
- Keywords:
- Riccati matrix equation; modified conjugate gradient algorithm; inexact Newton algorithm; orthogonal projection algorithm
- 分类号:
- O241.6
- 文献标志码:
- A
- 摘要:
- 针对在时变系统中提出的广义Riccati矩阵方程约束解问题,基于共轭梯度算法原理建立了两种求广义Riccati矩阵方程异类约束解(对称和反对称解)的算法,即非精确牛顿修正共轭梯度算法(In -Newton -MCG算法)和非精确牛顿正交投影算法(In -Newton -OPA算法),并给出了两种算法收敛性结论和两种算法的数值实验.算例表明, In -Newton -MCG算法在一定条件下比In -Newton -OPA算法具有更高的计算效率.
- Abstract:
- Two algorithms called inexact Newton modified conjugate gradient algorithm(In -Newton -MCG algorithm)and inexact Newton orthogonal projection algorithm(In -Newton -OPA algorithm)are developed in this paper, the two algorithms are based on the principle of conjugate gradient algorithm, which are developed for solving the constrained solutions of generalized Riccati matrix equation in time -varying systems. The convergence results and numerical experiments of the two algorithms are given. Numerical experiments shows that the In -Newton -MCG algorithm is more efficient than the In -Newton -OPA algorithm under certain conditions.
参考文献/References:
[1] 吴丹,朱经浩.一类时变广义系统的稳定性[J].同济大学学报(自然科学版),2010,38(6):925-934.
[2] 周霞,姚云飞,钟守铭.随机时滞控制系统的均方BIBO稳定性[J].应用数学,2012,25(3):672-677.
[3] LONG J H, HU X Y, ZHANG L. Improved Newton's method with exact line searches to solve quadratic matrix equation[J]. Journal of Computational and Applied Mathematics, 2008,222:645-654.
[4] 张凯院,宁倩芝,牛婷婷.一类离散时间代数Riccati矩阵方程对称解的双迭代算法[J].计算机工程与科学,2015,37(2):329-334.
[5] LIN Y Q, BAO L, WU Q H. On the convergence rate of an iterative method for solving nonsymmetric algebraic Riccati equations[J]. Computers and Mathematics with Applications, 2010,62:4178-4184.
[6] KE Y F, MA C F. An alternating direction method for nonnegative solutions of the matrix equation A X+Y B=C[J]. Comput Appl Math, 2017,36:359-365.
[7] 周富照,邹阳芳.子矩阵约束下矩阵方程A X=B的正交投影迭代解法[J].高等学校计算数学学报,2015,37(4):337-347.
[8] FEITZINGER F, HYLLA T, SACHS E W. Inexact Kleinman-Newton method for Riccati equations[J]. SIAM Journal on Matrix Analysis and Applications, 2009,31(2):272-288.
[9] 陈世军.非线性矩阵方程中心对称解的牛顿- MCG算法[J].延边大学学报(自然科学版),2019,45(2):109 -113.
备注/Memo
收稿日期: 2021-01-25 基金项目: 福建省教育厅中青年教师教育科研项目(JAT190410)
作者简介: 陈世军(1983—),男,讲师,研究方向为计算数学.