[1]陈世军.广义Riccati矩阵方程异类约束解的两种迭代算法[J].延边大学学报(自然科学版),2021,47(02):120-125,130.
 CHEN Shijun.Two iterative algorithms for heterogeneous constrained solutions of generalized Riccati matrix equation[J].Journal of Yanbian University,2021,47(02):120-125,130.
点击复制

广义Riccati矩阵方程异类约束解的两种迭代算法

参考文献/References:

[1] 吴丹,朱经浩.一类时变广义系统的稳定性[J].同济大学学报(自然科学版),2010,38(6):925-934.
[2] 周霞,姚云飞,钟守铭.随机时滞控制系统的均方BIBO稳定性[J].应用数学,2012,25(3):672-677.
[3] LONG J H, HU X Y, ZHANG L. Improved Newton's method with exact line searches to solve quadratic matrix equation[J]. Journal of Computational and Applied Mathematics, 2008,222:645-654.
[4] 张凯院,宁倩芝,牛婷婷.一类离散时间代数Riccati矩阵方程对称解的双迭代算法[J].计算机工程与科学,2015,37(2):329-334.
[5] LIN Y Q, BAO L, WU Q H. On the convergence rate of an iterative method for solving nonsymmetric algebraic Riccati equations[J]. Computers and Mathematics with Applications, 2010,62:4178-4184.
[6] KE Y F, MA C F. An alternating direction method for nonnegative solutions of the matrix equation A X+Y B=C[J]. Comput Appl Math, 2017,36:359-365.
[7] 周富照,邹阳芳.子矩阵约束下矩阵方程A X=B的正交投影迭代解法[J].高等学校计算数学学报,2015,37(4):337-347.
[8] FEITZINGER F, HYLLA T, SACHS E W. Inexact Kleinman-Newton method for Riccati equations[J]. SIAM Journal on Matrix Analysis and Applications, 2009,31(2):272-288.
[9] 陈世军.非线性矩阵方程中心对称解的牛顿- MCG算法[J].延边大学学报(自然科学版),2019,45(2):109 -113.

备注/Memo

收稿日期: 2021-01-25 基金项目: 福建省教育厅中青年教师教育科研项目(JAT190410)
作者简介: 陈世军(1983—),男,讲师,研究方向为计算数学.

更新日期/Last Update: 2021-07-20