[1]朴勇杰.乘积度量空间上Β- 拟压缩映射的唯一不动点[J].延边大学学报(自然科学版),2021,47(02):101-104,119.
 PIAO Yongjie.An unique fixed point for B -quasi contractive mappings on multiplicative metric spaces[J].Journal of Yanbian University,2021,47(02):101-104,119.
点击复制

乘积度量空间上Β- 拟压缩映射的唯一不动点

参考文献/References:

[1] C'IRIC' L J B. A generalizaion of Banachy's contraction principle[J]. Proc Amer Soc, 1974,45:267-273.
[2] KUMAM P, NGUYEN V D, SITTHAKERNGKIET K. A generalization of C'iric' fixed point theorems[J]. Filomat, 2015,29(7):1549-1556.
[3] LIU H, XU S Y. Cone metric spaces with Banach algebras and fixed point theorems of generalized Lipschitz mappings[J]. Fixed Point Theory and Applications, 2013,2013(1):1-10.
[4] XU S Y, RADENOVIC' S. Fixed point theorems of generalized Lipschitz mappings on cone metric spaces over Banach algebras without assumption of normality[J]. Fixed Point Theory and Applications, 2014,2014(1):1-12.
[5] 许绍元,马超,周作领.具有Banach代数的锥度量空间上拟压缩映射的新的不动点定理[J].中山大学学报(自然科学版),2015,54(4):1-4.
[6] 朴勇杰.具有Banach代数的无正规的锥度量空间上拟收缩映射的不动点定理的改进[J].中山大学学报(自然科学版),2018,57(1):63-68.
[7] RHAODES B E. Contraction type mappings on a 2 -metric space[J]. Maehmatische Nachrichten, 1979,91:151-155.
[8] PIAO Y J. C'iric' fixed point theorems under c -distance on non -normal con metric spaces over Banach algebras[J]. Adv Fixed Point Theory, 2020,10:5.
[9] BASHIROV A E, KURPLNARA E M, OZYAPLCL A. Multiplicative calculus and its applications[J]. J Math Anal Appl, 2008,337:36-48.
[10] ÖZAVSAR M, CEVIKEL A C. Fixed point of multiplicative contraction mappings on mul -tiplicative metric spaces[J]. Appl Math, 2012,3:35-39.
[11] GU F, CHO Y J. Common fixed points results for four maps satisfying A -contractive condition in multiplicative metric spaces[J]. Fixed Point Theory Appl, 2015,3:160-165.
[12] PIAO Y J. Unique common fixed points for four non -continuous mappings satisfying ψ- implicit contractive condition on non -complete multiplicative metric spaces[J]. Adv Fixed Point Theory, 2019,9(2):135-145.

相似文献/References:

[1]朴勇杰.乘积度量空间上具有唯一不动点的G - 隐式压缩映射[J].延边大学学报(自然科学版),2022,(01):1.
 PIAO Yongjie.G - implicit contractive mappings having an unique fixed point on multiplicative metric spaces[J].Journal of Yanbian University,2022,(02):1.
[2]朴勇杰.乘积度量空间上的F- 拟压缩条件和唯一不动点[J].延边大学学报(自然科学版),2022,(04):283.
 PIAO Yongjie.F- quasi contractive conditions and unique fixed points on multiplicative metric spaces[J].Journal of Yanbian University,2022,(02):283.

备注/Memo

收稿日期: 2021-04-03 基金项目: 国家自然科学基金(11361064)
作者简介: 朴勇杰(1962—),男,理学博士,教授,研究方向为非线性分析和不动点理论.

更新日期/Last Update: 2021-07-20