ZHU Qinghao,LIU Hongyu*.Photon antibunching of symmetric and antisymmetric modes with cross -Kerr nonlinearity[J].Journal of Yanbian University,2021,47(01):42-46.
基于交叉克尔对称模和反对称模的光子反聚束
- Title:
- Photon antibunching of symmetric and antisymmetric modes with cross -Kerr nonlinearity
- 文章编号:
- 1004-4353(2021)01-0042-05
- Keywords:
- cross -Kerr interaction; symmetric mode; antisymmetric mode; photon blockade; single -photon sources
- 分类号:
- O431
- 文献标志码:
- A
- 摘要:
- 为了制备可调谐单光子源,研究了在交叉克尔相互作用下由两个线性耦合的非线性模组成的对称模和反对称模的光子阻塞.研究结果显示,在该模型中对称模和反对称模都可以得到强光子反聚束,强光子反聚束的最佳交叉克尔相互作用与两模之间的耦合强度和频率失谐量的差呈线性关系,两模之间的耦合强度与频率失谐量呈准线性关系.这表明,通过调节该系统的交叉克尔相互作用或两模之间的耦合强度可以产生可调谐的单光子源.
- Abstract:
- For preparing tunable single -photon sources, we study the photon blockade of symmetric and antisymmetric modes under the assistance of a cross -Kerr interaction consisting of two linearly coupled nonlinear modes. Our calculations show that strong photon antibunching of both symmetric and antisymmetric modes can be obtained. We find that the optimal cross -Kerr interaction for strong photon antibunching in the symmetric and antisymmetric modes is linearly dependent on difference between the coupling strength of the two modes and frequency detunings, the coupling strength of the two modes for strong photon antibunching is quasi -linearly dependent on frequency detunings. This implies that the system can be used to generate tunable single -photon sources by tuning the values of cross -Kerr interaction or the coupling strength between the modes.
参考文献/References:
[1] IMAMOGLU A, SCHMIDT H, WOODS G, et al. Strongly interacting photons in a nonlinear cavity[J]. Physical Review Letter, 1997,79(8):1467-1470.
[2] DAYAN B, PARKINS S A, AOKI T, et al. A photon turnstile dynamically regulated by one atom[J]. Science, 2008,319(5866):1062-1065.
[3] FARAON A, FUSHMAN I, ENGLUND D, et al. Coherent generation of non -clasical light on a chip via photon -induced tunnelling and blockade[J]. Nature Physics, 2008,4:859-863.
[4] HOFFMAN A J, SRINIVASAN S J, SCHMIDT S, et al. Dispersive photon blockade in a superconducting circuit[J]. Physical Review Letters, 2011,107(5):053602.
[5] LIEW T C H, SAVONA V. Single photons from coupled quantum modes[J]. Physical Review Letters, 2010,104(18):183601.
[6] MAJUMDAR A, BAJCSY M, RUNDQUIST A, et al. Loss -enabled sub -possonian light generation in a bimodal nanocavity[J]. Physical Review Letters, 2012,108(18):183601.
[7] GERACE D, SAVONA V. Unconventional photon blockade in doubly resonant microcavities with second -order nonlinesrity[J]. Physical Review A, 2014,89(3):031803(R).
[8] ZHOU Y H, SHEN H Z, YI X X. Unconventional photon blockade with second -order nonlinearity[J]. Physical Review A, 2015,92(2):023838.
[9] SHEN H Z, ZHOU Y H, YI X X. Tunable photon blockade in coupled semiconductor cavities[J]. Physical Review A, 2015,91(6):063808.
[10] XU X W, LI Y J. Antibunching photons in a cavity coupled to an optomechanical system[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2013,46:035502.
[11] XU X W, LI Y. Strong photon antibunching of symmetric and antisymmetric modes in weakly nonlinear photonic molecules[J]. Physical Review A, 2014,90(3):033809.
[12] ZOU F, FAN L B, HUANG J F, et al. Enhancement of few -photon optomechanical effects with cross -Kerr nonliearity[J]. Phyical Review A, 2019,99(4):043837.
[13] SCULLY M O, ZUBAIRY M S. Quantum Optics[M]. Cambridge: Cambridge University Press, 2012:114.
备注/Memo
收稿日期: 2021-01-22
基金项目: 吉林省教育厅“十三五”科学研究规划项目(JJKH20200510KJ)
*通信作者: 刘洪雨(1982—),男,博士,副教授,研究方向为量子光学.