LI Dekui,ZHANG Huaide.Variable structure sliding mode control of a class of Van der Pol -Duffing system[J].Journal of Yanbian University,2021,47(01):27-31,63.
一类Van der Pol - Duffing系统的变结构滑模控制
- Title:
- Variable structure sliding mode control of a class of Van der Pol -Duffing system
- 文章编号:
- 1004-4353(2021)01-0027-06
- Keywords:
- Van der Pol -Duffing system; Lyapunov exponent theory; variable structure sliding mode control; parameter identification
- 分类号:
- O322
- 文献标志码:
- A
- 摘要:
- 研究了一类含有平方项和5次幂项的Van der Pol -Duffing系统的跟踪控制问题.首先,基于Lyapunov指数理论和分岔理论分析了该系统的复杂动力学行为,包括周期运动、倍周期分岔、混沌运动等; 然后,在系统参数已知和未知的两种情况下,基于Lyapunov稳定性定理分别构造了两类简单的变结构滑模控制器对该系统的混沌行为进行跟踪控制,并均跟踪控制到了预期的运动状态.最后,利用数值仿真验证了上述两类滑模控制器对该系统跟踪控制的有效性.
- Abstract:
- Tracking control problem of a class of Van der Pol -Duffing system with square term and fifth power term is studied. Firstly, based on Lyapunov exponent theory and bifurcation theory, the complex dynamic behaviors of the system are analyzed, including periodic motion, period doubling bifurcation, chaotic motion, etc. Then, under two situations which are known parameters and unknown parameters of the system, two types of simple variable structure sliding mode controllers are constructed to track control the chaotic behavior of the system based on Lyapunov stability theorem, and make the system track control to the expected motion state. Finally, the effectiveness of two types of sliding mode controllers for tracking control of the Van der Pol -Duffing system is verified by numerical simulation.
参考文献/References:
[1] 刘秉正,彭建华.非线性动力学[M].北京:高等教育出版社,2004:27-35.
[2] RAJASEKAR S, MURALI K, LAKSHMANAN M. Control of chaos by nonfeedback methods in a simple electronic circuit system and fitzhugh -nagumo equation[J]. Chaos, Solitons & Fractals, 1997,8(9):1545-1558.
[3] 符五久.Duffing -Van der Pol系统的Hopf分岔[J].振动与冲击,2010,29(7):204-209.
[4] 石艳香.三阱Duffing -Van der Pol系统的分支与混沌[J].山西大学学报(自然科学版),2019,42(3):517- 525.
[5] 刘坤峰,靳艳飞.相关白噪声激励下双稳态Duffing -Van der Pol系统的随机分岔[J].动力学与控制学报,2019,17(2):1-7.
[6] BALA SHUNMUGA JOTHI V, SELVARAJ S, CHINNATHAMBI V, et al. Bifurcations and chaos in two -coupled periodically driven four -well Duffing -van der Pol oscillators[J]. Chinese Journal of Physics, 2017,55(5):1849-1856.
[7] 秦爽,张建刚,杜文举,等.一类Van der Pol -Duffing系统的Hopf分岔控制[J].河北师范大学学报(自然科学版),2017,41(1):24-31.
[8] 吴德华,林毅.基于混沌的汇流瓶颈区交通流模糊控制与仿真研究[J].贵州大学学报(自然科学版),2017,34(6):110-114.
[9] OTT E, GREBOGI C, YORKE J A. Controlling chaos[J]. Physics Review Letters, 1990,64(11):1196-1199.
[10] 徐昌进.Arneodo混沌动力系统的时滞反馈控制[J].西南大学学报(自然科学版),2013,35(3):1-8.
[11] LI D K. Modified functional projective synchronization of the unidirectional and bidirectional hybrid connective star network with coupling time -delay[J]. Wuhan University Journal of Natural Sciences, 2019,24(4):321-328.
[12] 程春蕊,毛北行.参数未知的分数阶不确定R(¨overo)ssler混沌系统的自适应滑模同步[J].数学的实践与认识,2020,50(8):186-191.
[13] CHEN X Y, PARK J H, CAO J D, et al. Sliding mode synchronization of multiple chaotic systems with uncertainties and disturbances[J]. Applied Mathematics and Computation, 2017,308:161-173.
备注/Memo
收稿日期: 2020-12-06
作者简介: 李德奎(1979—),男,副教授,研究方向为混沌理论及其应用.
基金项目: 甘肃省高等学校创新基金(2020A-191); 甘肃中医药大学科学研究与创新基金(2019KCYB -10)