[1]林志强.带有局部化源的弱耦合退化奇异抛物型方程组解的爆破性[J].延边大学学报(自然科学版),2021,47(01):10-16.
 LIN Zhiqiang.Global existence and blow-up for parabolic system with localized source[J].Journal of Yanbian University,2021,47(01):10-16.
点击复制

带有局部化源的弱耦合退化奇异抛物型方程组解的爆破性

参考文献/References:

[1] LI J, CUI Z J, MU C L. Global existence and blow -up for degenerate and singular parabolic system with localized sources[J]. Appl Math Comput, 2008,199(1):292-300.
[2] 王胜青,何万生,彭聪明.具有非局部源的退化奇异抛物方程组解的爆破[J].纯粹数学与应用数学,2016,32(5):448-456.
[3] JOHN M C, PEIRCE A, YIN H M. The blow -up property of solutions to some diffusion equations with localized nonlinear reaction[J]. Math Anal Appl, 1992,169(2):313-328.
[4] 王明新,李慧玲.带有非线性局部化反应源项的抛物型方程组解的一致爆破模式与边界层[J].中国科学:数学,2004,34(5):537-548.
[5] CHEN Y P, LIU Q L, GAO H J. Boundedness of global solutions of a porous medium equations with a localized source[J]. Nonlinear Analysis, 2006,64(10):2168-2182.
[6] 刘其林,李玉祥,谢春红.带局部非线性反应项的退化解的抛物方程解的爆破性质[J].数学学报,2003,6:1135-1142.
[7] ZHENG B Z, CHEN Y P. Global blow -up for a localized degenerate and singular parabolic equations with weighted nonlocal boundary conditions[J]. Ann of Diff Eqs, 2014,30(4):484-493.
[8] ZHOU J, MU C L. Global existence and blow -up for weakly coupled degenerate and singular parabolic equation with localized source[J]. Z Angew Math Phys, 2011,62:47-66.
[9] CHAN C Y, CHEN C S. A numerical method for semi -linear singular parabolic quenching problem[J]. Quart Appl Math, 1989,47:45-57.
[10] BIMPONG -BOTA K, ORTOLEVA P, ROSSI J. Far -From -equilibrium phenomena at local sites of reaction[J]. J Chem Phys, 1974,60(8):3124-3133.
[11] ORTOLEVA P, ROSSI J. Local structures in chemical reactions with heterogeneous catalysis[J]. J Chem Phys, 1972,56(9):4397-4400.
[12] 叶其孝,李正元.反应扩散方程引论[M].北京:科学出版社,1999:106-147.
[13] 王术.Sobolev空间与偏微分方程引论[M].北京:科学出版社,2008:18-23.
[14] 姜礼尚,陈亚浙,易法槐,等.数学物理方程讲义[M].北京:高等教育出版社,1986:161-183.

备注/Memo

收稿日期: 2020-09-20
基金项目: 福建省教育厅中青年教师教育科研项目(JT180741)
作者简介: 林志强(1983—),男,讲师,研究方向为偏微分方程.

更新日期/Last Update: 2021-04-20