LIN Zhiqiang.Global existence and blow-up for parabolic system with localized source[J].Journal of Yanbian University,2021,47(01):10-16.
带有局部化源的弱耦合退化奇异抛物型方程组解的爆破性
- Title:
- Global existence and blow-up for parabolic system with localized source
- 文章编号:
- 1004-4353(2021)01-0010-07
- Keywords:
- upper and lower solutions; localized source; blow -up; blow -up set; blow -up rate estimates
- 分类号:
- O175.26
- 文献标志码:
- A
- 摘要:
- 在齐次狄利克雷边界条件下讨论了带有局部化源的弱耦合退化奇异抛物型方程组ut-(xαux)x=em u(x<sup>0(t),t)+n v(x<sup>0(t),t), vt-(xβvx)x=ep u(x<sup>0(t),t)+q v(x<sup>0(t),t)的爆破性,其中x0(t):R+→(0,a)是H246;lder连续的, T≤∞, a(a>0)是常数, m、n、p、q是正实数, α,β∈[0,2).利用上下解的方法得到了上述方程组的非负古典解的存在性和解在有限时刻爆破的充分条件,并得到了α=β条件下的解的爆破速率.
- Abstract:
- In this paper, we discuss the following weakly coupled degenerate and singular parabolic equations with localized source ut-(xαux)x=em u(x<sup>0(t),t)+n v(x<sup>0(t),t), vt-(xβvx)x=ep u(x<sup>0(t),t)+q v(x<sup>0(t),t) in(0,a)×(0,T)with homogeneous Dirichlet boundary conditions, where x0(t):R+→(0,a)is Hölder continuous, T≤∞, a(a>0)are constants, m,n,p,q are positive real numbers and α,β∈[0,2). The existence of a unique classical non -negative solution is established and the sufficient conditions for the solution that blow -up in finite time are obtained. We also obtain the blow -up rate under the condition α=β.
参考文献/References:
[1] LI J, CUI Z J, MU C L. Global existence and blow -up for degenerate and singular parabolic system with localized sources[J]. Appl Math Comput, 2008,199(1):292-300.
[2] 王胜青,何万生,彭聪明.具有非局部源的退化奇异抛物方程组解的爆破[J].纯粹数学与应用数学,2016,32(5):448-456.
[3] JOHN M C, PEIRCE A, YIN H M. The blow -up property of solutions to some diffusion equations with localized nonlinear reaction[J]. Math Anal Appl, 1992,169(2):313-328.
[4] 王明新,李慧玲.带有非线性局部化反应源项的抛物型方程组解的一致爆破模式与边界层[J].中国科学:数学,2004,34(5):537-548.
[5] CHEN Y P, LIU Q L, GAO H J. Boundedness of global solutions of a porous medium equations with a localized source[J]. Nonlinear Analysis, 2006,64(10):2168-2182.
[6] 刘其林,李玉祥,谢春红.带局部非线性反应项的退化解的抛物方程解的爆破性质[J].数学学报,2003,6:1135-1142.
[7] ZHENG B Z, CHEN Y P. Global blow -up for a localized degenerate and singular parabolic equations with weighted nonlocal boundary conditions[J]. Ann of Diff Eqs, 2014,30(4):484-493.
[8] ZHOU J, MU C L. Global existence and blow -up for weakly coupled degenerate and singular parabolic equation with localized source[J]. Z Angew Math Phys, 2011,62:47-66.
[9] CHAN C Y, CHEN C S. A numerical method for semi -linear singular parabolic quenching problem[J]. Quart Appl Math, 1989,47:45-57.
[10] BIMPONG -BOTA K, ORTOLEVA P, ROSSI J. Far -From -equilibrium phenomena at local sites of reaction[J]. J Chem Phys, 1974,60(8):3124-3133.
[11] ORTOLEVA P, ROSSI J. Local structures in chemical reactions with heterogeneous catalysis[J]. J Chem Phys, 1972,56(9):4397-4400.
[12] 叶其孝,李正元.反应扩散方程引论[M].北京:科学出版社,1999:106-147.
[13] 王术.Sobolev空间与偏微分方程引论[M].北京:科学出版社,2008:18-23.
[14] 姜礼尚,陈亚浙,易法槐,等.数学物理方程讲义[M].北京:高等教育出版社,1986:161-183.
备注/Memo
收稿日期: 2020-09-20
基金项目: 福建省教育厅中青年教师教育科研项目(JT180741)
作者简介: 林志强(1983—),男,讲师,研究方向为偏微分方程.