[1]石志高.水资源非线性损失对植被生长影响的模型研究[J].延边大学学报(自然科学版),2023,(02):149-154.
 SHI Zhigao.A model study on the impact of nonlinear loss of water resources on vegetation growth[J].Journal of Yanbian University,2023,(02):149-154.
点击复制

水资源非线性损失对植被生长影响的模型研究

参考文献/References:

[1] 季树新,乔荣荣,白雪莲,等.荒漠绿洲过渡带不同生境植被生产力格局对降雨的响应[J].生态学杂志,2020,39(2):376-383.
[2] 杨锦.石羊河流域荒漠绿洲区植被与地下水埋深的关系研究[J].甘肃水利水电技术,2018,54(12):1-4.
[3] 魏伟,石培基,周俊菊,等.近20年和田绿洲水资源变化及其驱动力分析[J].干旱区资源与环境,2013,27(2):156-161.
[4] 阿布都热合曼·哈力克.基于生态环境保护的且末绿洲生态需水量研究[J].干旱区资源与环境,2012,6(7):20-25.
[5] 阿卜杜许库尔·热合曼,阿布都热西提·阿布都外力.植被根吸水对植被斑图的影响研究[J].新疆大学学报(自然科学版)(中英文),2021,38(5):556-562.
[6] 冯建刚,阿布都热西提·阿布都外力.干旱区绿洲植被退化模型的定性分析[J].山东理工大学学报(自然科学版),2014,28(1):35-37.
[7] YU S B.Extinction for a discrete competition system with feedback controls[J].Advances in Difference Equations,2017,2017:9-19.
[8] CHEN S S.Nonexistence of nonconstant positive steady states of a diffusive predator-prey model[J].Communications on Pure & Applied Analysis,2018,17(2):477-485.
[9] ZHOU J,KIM C G,SHI J P.Positive steady state solutions of a diffusive Leslie-Gower predator-prey model with Holling type II functional response and cross-diffusion[J].Discrete & Continuous Dynamical Systems-A,2014,34(9):3875-3899.
[10] XIE Z F.Turing instability in a coupled predator-prey model with different Holling type functional responses[J].Discrete & Continuous Dynamical Systems,2011,4(6):1621-1628.
[11] 张芷芬,丁同仁,黄文灶,等.微分方程定性理论[M].北京:科学出版社,1985.

相似文献/References:

[1]郑伟强,周小燕,胡萍,等.一类反应扩散方程的行波解[J].延边大学学报(自然科学版),2014,40(03):203.
 ZHENG Weiqiang,ZHOU Xiaoyan,HU Ping,et al.Travelling wave solutions to a kind of reaction-diffusion equations[J].Journal of Yanbian University,2014,40(02):203.
[2]李晓艳,谢建民.一类高阶有理差分方程的全局行为[J].延边大学学报(自然科学版),2016,42(04):302.
 LI Xiaoyan,XIE Jianmin.Global behavior of a higher-order rational difference equation[J].Journal of Yanbian University,2016,42(02):302.
[3]王清娟.具常数投放率的捕食者-食饵模型的定性分析[J].延边大学学报(自然科学版),2017,43(04):339.
 WANG Qingjuan.Qualitative analysis of predator-prey system with constant rate stocking[J].Journal of Yanbian University,2017,43(02):339.
[4]王清娟.食饵具有常数投放率的Holling-IV类捕食系统的定性分析[J].延边大学学报(自然科学版),2018,44(03):213.
 WANG Qingjuan.Qualitative analysis of predator-prey system with constantrate stocking for prey under Holling-IV functional response[J].Journal of Yanbian University,2018,44(02):213.
[5]王娜.一类具有隔离项的时滞分数阶SIQ传染病模型的稳定性分析[J].延边大学学报(自然科学版),2023,(01):36.
 WANG Na.Stability analysis of a class of time - lagged fractional - order SIQ infectious disease models with segregation[J].Journal of Yanbian University,2023,(02):36.
[6]王逸勤,施春玲.具有常数避难所和恐惧效应的HollingⅡ类功能性反应捕食食饵系统的定性分析[J].延边大学学报(自然科学版),2023,(02):116.
 WANG Yiqin,SHI Chunling.Qualitative analysis of a predator-prey system with Holling type Ⅱ functional response incorporating fear effct and a constant prey refuge[J].Journal of Yanbian University,2023,(02):116.
[7]王檄豪,韦煜明.一类具有恐惧效应的时滞广义Holling Ⅲ型捕食者- 食饵模型的动力学分析[J].延边大学学报(自然科学版),2023,(04):288.
 WANG Xihao,WEI Yuming.Dynamic analysis of a delayed predator - prey model with fear effect and generalized Holling type Ⅲ functional response[J].Journal of Yanbian University,2023,(02):288.

备注/Memo

收稿日期: 2023 04 08
基金项目: 福建省自然科学基金(2021J011228)
作者简介: 石志高(1983—),男,硕士,副教授,研究方向为微分方程及应用.

更新日期/Last Update: 2023-06-20