[1]温倩,郑航.具有Kuramoto-Sivashinsky扰动的广义Zakharov-Kuznetsov方程孤立波解的存在性[J].延边大学学报(自然科学版),2023,(02):102-108.
 WEN Qian,ZHENG Hang.Existence of solitary wave solutions of generalized Zakharov-Kuznetsov equation with Kuramoto-Sivashinsky perturbation[J].Journal of Yanbian University,2023,(02):102-108.
点击复制

具有Kuramoto-Sivashinsky扰动的广义Zakharov-Kuznetsov方程孤立波解的存在性

参考文献/References:

[1] KORTEWEG D J,VRIES G D.On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves[J].Philosophical Magazine,2011,91(6):1007-1028.
[2] ZAKHAROV V,KUZNETSOV E.On three-dimensional solitons[J].Soviet Physics,1974,39:285-288.
[3] ZHANG W B,ZHOU J B.Traveling wave solutions of a generalized Zakharov-Kuznetsov equation[J].ISRN Mathematical Analysis,2012,2012:107846.
[4] WAZWAZ A M.Exact solutions with solitons and periodic structures for the Zakharov-Kuznetsov (ZK) equation and its modified form[J].Communications in Nonlinear Science and Numerical Simulation,2005,10(6):597-606.
[5] WAZWAZ A M.The extended tanh method for the Zakharov-Kuznetsov (ZK) equation, the modified ZK equation,and its generalized forms[J].Communications in Nonlinear Science and Numerical Simulation,2008,13(6):1039-1047.
[6] KOLEBAJE O T,AKINYEMI P,OBENDE M.Travelling wave solutions of the generalized Zakharov-Kuznetsov equation via the extended generalized Riccati equation mapping method[J].International Journal of Advanced Mathematical Sciences,2013,1(1):1-7.
[7] OGAWA T.Travelling wave solutions to a perturbed Korteweg-de Vries equation[J].Hiroshima Mathematical Journal,1994,24(2):401-422.
[8] LI C Q,WEI M Z,LIN Y H.Existence of solitary waves in a perturbed KdV-mKdV equation[J].Journal of Mathematics,2021,2021:2270924.
[9] 丘慧敏,沈建和.扰动浅水波方程的行波解和显式Melnikov方法[J].福建师范大学学报(自然科学版),2021,37(6):14-21.
[10] ZHENG H,XIA Y.The solitary wave, kink and anti-kink solutions coexist at the same speed in a perturbed nonlinear Schr?dinger equation[J].Journal of Physics A:Mathematical and Theoretical,2023,56(15):155701.
[11] FENICHEL N.Geometric singular perturbation theory for ordinary differential equations[J].Journal of Differential Equations,1979,31(1):53-98.
[12] 赵爱民,李美丽,韩茂安.微分方程基本理论[M].北京:科学出版社,2011:112.
[13] 韩茂安.Bifurcation theory of limit cycles[M].北京:科学出版社,2016.
[14] GRADSHTEYNI S,RYZHIK I M.Table of integrals, series and products[M].Amsterdam:Academic Press,2014:3623.

备注/Memo

收稿日期: 2023 03 23
基金项目: 福建省中青年教师教育科研项目(JAT200670,JAT210454)
作者简介: 温倩(1981—),女,硕士,讲师,研究方向为微分方程.

更新日期/Last Update: 2023-06-20