[1]仲会娟,蔡清泳.基于多尺度卷积神经网络的交通标志识别方法[J].延边大学学报(自然科学版),2020,46(04):359-365.
 ZHONG Huijuan,CAI Qingyong.Traffic sign recognition method based on multi - scale convolutional neural network[J].Journal of Yanbian University,2020,46(04):359-365.
点击复制

基于多尺度卷积神经网络的交通标志识别方法

参考文献/References:

[1] 周飞燕,金林鹏,董军.卷积神经网络研究综述[J].计算机学报,2017,40(6):1229-1251.
[2] 李新,禹翼.基于SIFT算法的交通标志识别[J].制造业自动化,2012,34(5):10-12.
[3] DOUVILLE P. Real -time classification of traffic signs[J]. Real -time Imaging, 2000,6(3):185-193.
[4] MALDONADO-BASCON S, LAFUENTE-ARROYO S, GIL -JIMENEZ P, et al. Road -sign detection and recognition based on support vector machines[J]. Intelligent Transportation Systems, 2007,8(2):264-278.
[5] 甘露,田丽华,李晨.基于融合特征和BP网络的交通标志识别方法[J].计算机工程与设计,2017,(38)10:2783-2813.
[6] SERMANET P, LECUN Y. Trafficsign recognition with multi -scale convolutional networks[C]//The 2011 International Joint Conference on Neural Networks(IJCNN). Washington DC: IEEE Computer Society, 2011:2809-2813.
[7] STALLKAMP J, SCHLIPSING M, SALMEN J, et al. The German traffic sign recognition benchmark[EB/OL].[2012-02-06].http://benchmark.ini.rub.de/?section=gtsrb&subsection=news.
[8] 王晓斌,黄金杰,刘文举.基于优化卷积神经网络结构的交通标志识别[J].计算机应用,2017,37(2):530-534.
[9] 宋青松,张超,田正鑫,等.基于多尺度卷积神经网络的交通标志识别[J].湖南大学学报(自然科学版),2018,45(8):131-137.
[10] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large -scale image recognition[EB/OL].[2014-04-10].https://arxiv.org/abs/1409.1556.
[11] 仲会娟.基于CNN的多尺度特征在手写数字识别中的应用[J].绵阳师范学院学报,2019,11(5):22-26.
[12] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition. Washington DC: IEEE Computer Society, 2015:3431-3440.
[13] 冀晓兵.图像尺寸变换的算法研究[D].西安:建筑科技大学信息与技术控制学院,2017.
[14] 陈清江,李毅,柴昱洲.一种基于深度学习的多聚焦图像融合算法[J].激光与光电子学进展,2018,55(7):246-254.
[15] ZEILER M, FERGUS R. Visualizing and under standing convolutional networks[C]//13th European conference on Computer Vision. Zurich: Springer, 2014:818-833.

备注/Memo

收稿日期: 2020-07-26 作者简介: 仲会娟(1985—),女,讲师,研究方向为图像与信号处理、无线通信技术.
基金项目: 福建省中青年教师教育科研项目(JT180724); 电子信息与通信技术慕课应用型团队项目(2019sjtd01)

更新日期/Last Update: 2020-12-20