DENG Can,JI Xin*.A comparative study on shortcut - to - adiabaticity techniques in the generation of entangled states[J].Journal of Yanbian University,2020,46(04):308-316.
绝热捷径技术在纠缠制备中的对比研究
- Title:
- A comparative study on shortcut - to - adiabaticity techniques in the generation of entangled states
- 文章编号:
- 1004-4353(2020)04-0308-09
- 关键词:
- Lewis -Riesenfeld不变量; 无跃迁量子驱动; 超绝热迭代; 缀饰态
- Keywords:
- Lewis -Riesenfeld invariant; transitionless quantum driving; superadiabatic iterations; dressed state
- 分类号:
- O431
- 文献标志码:
- A
- 摘要:
- 为对比Lewis -Riesenfeld(LR)不变量、无跃迁量子驱动、超绝热迭代和缀饰态4种绝热捷径技术在制备纠缠态时的性能,在介绍LR不变量、无跃迁量子驱动、超绝热迭代以及缀饰态的基础上,基于控制变量的物理思想从多角度对比分析了这4种绝热捷径技术在制备纠缠态时的优缺点.对比结果表明,这4种绝热捷径技术均能快速实现高保真度和对环境鲁棒的纠缠,但由于构建绝热捷径的方式不同,这4种绝热捷径技术均存在不同的限制.因此,对于不同的实验要求和实验条件,应灵活选择不同的绝热捷径技术.
- Abstract:
- In order to compare the performance of four shortcut - to - adiabaticity techniques, including Lewis-Riesenfeld(LR)invariant, transitionless quantum driving, superadiabatic iterations and dressed state, in the generation of entanglement, based on the introduction of LR invariant, transitionless quantum driving, superadiabatic iterations and dressed state, the advantages and disadvantages of these four shortcuts to adiabaticity are compared in the preparation of entangled states from multiple perspectives based on the physical ideas of control variable. The results indicate that all four kinds of shortcut -to -adiabaticity schemes can quickly achieve the entanglement of high fidelity and robust to the environment, however, they have different limitations due to the different ways of constructing shortcut to adiabaticity. Therefore, for different experimental requirements and conditions, different techniques should be selected flexibly.
参考文献/References:
[1] BENNETT C H, WIESNER S J. Communication via one -and two -particle operators on Einstein -Podolsky -Rosen states[J]. Physical Review Letters, 1992,69(20):2881-2884.
[2] BENNETT C H, BRASSARD G, CREPEAU C, et al. Teleporting an unknown quantum state via dual classical and Einstein -Podolsky -Rosen channels[J]. Physical Review Letters, 1993,70(13):1895-1899.
[3] ZHANG Z J, MAN Z X. Multiparty quantum secret sharing of classical messages based on entanglement swapping[J]. Physical Reviews A, 2005,72(3):15-19.
[4] SONG C, SU S L, WU J L, et al. Generation of tree -type three -dimensional entangled states via adiabatic passage[J]. Physical Reviews A, 2016,93(6):062321.
[5] WU J L, SONG C, XU J, et al. Adiabatic passage for one -step generation of n-qubit Greenberger -Horne -Zeilinger states of superconducting qubits via quantum Zeno dynamics[J]. Quantum Information Processing, 2016,15(9):3663-3675.
[6] CHEN X, TORRONTEGUI E, MUGA J G. Lewis -Riesenfeld invariants and transitionless quantum driving[J]. Physical Reviews A, 2011,83(6):062116.
[7] LEWIS H R, RIESENFELD W B. An exact quantum theory of the time -dependent harmonic oscillator and of a charged particle in a time -dependent electromagnetic field[J]. Journal of Mathematical Physics, 1969,10(8):1458.
[8] LIANG Y, SONG C, JI X, et al. Fast CNOT gate between two spatially separated atoms via shortcuts to adiabatic passage[J]. Optics Express, 2015,23(18):23798.
[9] BERRY M V. Transitionless quantum driving[J]. Journal of Physics A: Mathematical and Theoretical, 2009,42(36):365303(9).
[10] ZHANG J, KYAW T H, TONG D M, et al. Fast non -Abelian geometric gates via transitionless quantum driving[J]. Scientific Reports, 2015,5:18414.
[11] IBANEZ S, CHEN X, MUGA J G. Improving shortcuts to adiabaticity by iterative interaction pictures[J]. Physical Reviews A, 2013,87(4):043402.
[12] HATOMURA T, PAWOWSKI K. Superadiabatic generation of cat states in bosonic Josephson junctions under particle losses[J]. Physical Review A, 2019,99(4):043621.
[13] BAKSIC A, RIBEIRO H, CLERK A A. Speeding up adiabatic quantum state transfer by using dressed states[J]. Physical Review Letters, 2016,116(23):230503.
[14] WU J L, JI X, ZHANG S. Fast adiabatic quantum state transfer and entanglement generation between two atoms via dressed states[J]. Scientific Reports, 2017,7:46255.
[15] WU J L, JI X, ZHANG S. Dressed -state scheme for a fast CNOT gate[J]. Quantum Information Processing, 2016,16(12):294.
[16] YU L, XU J, WU J L, et al. Fast generating W state of three superconducting qubits via Lewis -Riesenfeld invariants[J]. Chinese Physics B, 2017,26(6):060306.
[17] CHEN X, RUSCHHAUPT A, SCHMIDT S, et al. Fast optimal frictionless atom cooling in harmonic traps: Shortcut to adiabaticity[J]. Physical Review Letters, 2010,104(6):063002.
[18] TAKAHASHI K. Shortcuts to adiabaticity for quantum annealing[J]. Physical Review A, 2017,95(1):012309.
[19] CHEN Y H, SHI Z C, SONG J, et al. Invariant -based inverse engineering for fluctuation transfer between membranes in an optomechanical cavity system[J]. Physical Review A, 2018,97(2):023841.
[20] BENDER C M, BRODY D C, JONES H F, et al. Faster than hermitian quantum mechanics[J]. Physical Review Letters, 2007,98(4):040403.
[21] CHEN X, MUGA J G. Transient energy excitation in shortcuts to adiabaticity for the time -dependent harmonic oscillator[J]. Physical Reviews A, 2012,82(5):3249-3253.
[22] REZEK Y, SALAMON P, HOFFMANN K, et al. The quantum refrigerator: the quest for absolute zero[J]. Europhysics Letters, 2009,85(3):30008.
[23] BERRY M V. Quantum phase corrections from adiabatic iteration[J]. Proceedings of the Royal Society A Mathematical Physical & Engineering Sciences, 1987,414(1846):31-46.
[24] WU J L, SONG C, JI X, et al. Fast generation of three -dimensional entanglement between two spatially separated atoms via invariant -based shortcut[J]. Journal of the Optical Society of America B, 2016,33(10):2026.
[25] HUANG X B, CHEN Y H, WANG Z. Fast generation of three -qubit Greenberger -Horne -Zeilinger state based on the Lewis -Riesenfeld invariants in coupled cavities[J]. Scientific Reports, 2016,6:25707.
[26] YU L, XU J, WU J L, et al. Fast generating W state of three superconducting qubits via Lewis -Riesenfeld invariants[J]. Chinese Physics B, 2017,26(6):47-52.
[27] HUANG X B, ZHONG Z R, CHEN Y H. Generation of multi -atom entangled states in coupled cavities via transitionless quantum driving[J]. Quantum Information Processing, 2015,14(12):4475-4492.
[28] CHEN Y H, XIA Y, SONG J, et al. Shortcuts to adiabatic passage for fast generation of Greenberger -Horne -Zeilinger states by transitionless quantum driving[J]. Scientific Reports, 2015,5(1):15616.
[29] HUANG B H, CHEN Y H, WU Q C, et al. Fast generating Greenberger -Horne -Zeilinger state via iterative interaction pictures[J]. Laser Physics Letters, 2016,13(10):105202.
[30] WU J L, SU S L, JI X, et al. Superadiabatic scheme for optimizing the fast generation of tree -type 3D entanglement[J]. Annals of Physics, 2017,386:34-43.
[31] KANG Y H, CHEN Y H, SHI Z C, et al. Fast preparation of W states with superconducting quantum interference devices by using dressed states[J]. Physical Review A, 2016,94(5):052311.
[32] ZHANG X, CHEN Y H, SHI Z C, et al. Generation of three -qubit Greenberger -Horne -Zeilinger states of superconducting qubits by using dressed states[J]. Quantum Information Processing, 2017,16(12):309.
备注/Memo
收稿日期: 2020-05-07 基金项目: 国家自然科学基金地区项目(11464046)
*通信作者: 计新(1965—),女,博士,教授,研究方向为量子光学与量子信息学.