ZHAO Jinwei,PIAO Guangri*.Analysis and approximation of linear feedback control in the reduced modeling for Navier - Stokes flows[J].Journal of Yanbian University,2020,46(04):295-301.
Navier - Stokes系统降维模型中线性反馈控制的分析与逼近
- Title:
- Analysis and approximation of linear feedback control in the reduced modeling for Navier - Stokes flows
- 文章编号:
- 1004-4353(2020)04-0295-07
- 关键词:
- Navier - Stokes系统; 降维模型; 线性反馈控制
- 分类号:
- O242.21
- 文献标志码:
- A
- 摘要:
- 讨论了Navier - Stokes系统降维模型的线性反馈控制问题.首先介绍了特征正交分解方法(proper orthogonal decomposition, POD),然后利用该方法建立了Navier - Stokes系统反馈控制问题的降维模型,最后运用Ritz - Galerkin方法估计了线性反馈控制问题的降维模型解与有限元解之间的误差,并给出了计算降维模型解和速度跟踪问题的算法.
- Abstract:
- This paper discusses the linear feedback control of Navier - Stokes flows in a reduced - order modeling. Firstly, we introduce the proper orthogonal decomposition method. And then, use the method to establish a reduced - order modeling of the Navier - Stokes flows feedback control problem. Finally, we estimate the error between the finite element solution and the reduced -order modeling solution of the linear feedback control problem with the Ritz - Galerkin method, and propose algorithms for calculating the solution of reduced order modeling and velocity tracking problem.
参考文献/References:
[1] GUNZBURGER M D, MANSERVISI S. Analysis and approximation of the velocity tracking problem for Navier -Stokes flows with distributed control[J]. SIAM Journal on Numerical Analysis, 2000,37(5):1481-1512.
[2] SRITHARAN S S. Dynamic programming of the Navier - Stokes equations[J]. Systems & Control Letters, 1991,16(4):299-307.
[3] GUNZBURGER M D, MANSERVISI S. The velocity tracking problem for Navier - Stokes flows with bounded distributed controls[J]. SIAM Journal on Control & Optimization, 1999,37(6):1913-1945.
[4] HOU L S, RAVINDRAN S S, YAN Y. Numerical solutions of optimal distributed control problems for incompressible flows[J]. International Journal of Computational Fluid Dynamics, 1997,8(2):99-114.
[5] 欧秋兰.两类方程基于POD的新数值解法[D].北京:华北电力大学,2012.
[6] TEMAM R. Navier -Stokes Equations[M]. Amsterdam: North -Holland, 1979.
[7] BREZZI F, FORTIN M. Mixed and Hybrid Finite Element Methods[M]. New York: Springer -Verlag, 1991.
[8] CIARLET P G. The Finite Element Method for Elliptic Problems[M]. Philadelphia: Society for Industrial and Applied Mathematics, 1978.
[9] LUO Z D, CHEN J, NAVON I M, et al. Mixed finite element formulation and error estimates based on proper orthogonal decomposition for the nonstationary Navier -Stokes equations[J]. Siam Journal on Numerical Analysis, 2008,47(1):1-19.
[10] LUO Z D, ZHOU Y J, YANG X Z. A reduced finite element formulation based on proper orthogonal decomposition for Burgers equation[J]. Applied Numerical Mathematics, 2009,59(8):1933-1946.
[11] GUNZBURGER M D, MANSERVISI S. Analysis and approximation for linear feedback control for tracking the velocity in Navier -Stokes flows[J]. Computer Methods in Applied Mechanics & Engineering, 2000,189(3):803-823.
[12] ADAMS R A. Sobolev Spaces[M]. London: Academic Press, 1975.
相似文献/References:
[1]张宝玖,朴光日.基于POD方法的广义KdV - RLW - Rosenau方程的数值解[J].延边大学学报(自然科学版),2022,(01):13.
ZHANG Baojiu,PIAO Guangri.The numerical solution of generalized KdV - RLW - Rosenau equations based on POD method[J].Journal of Yanbian University,2022,(04):13.
[2]周羽,金艳.(1+1)维Maxwell - Chern - Simons -Higgs系统解的整体存在性[J].延边大学学报(自然科学版),2023,(01):16.
ZHOU Yu,JIN Yan.Global existence of Maxwell - Chern - Simons -Higgs system in(1+1)- dimension[J].Journal of Yanbian University,2023,(04):16.
备注/Memo
收稿日期: 2020-10-21 基金项目: 吉林省科技发展计划项目(20180101215JC)
*通信作者: 朴光日(1968—),男,博士,教授,研究方向为数值计算.