LIN Zhixing,YANG Zhongpeng*,CHEN Meixiang,et al.Some researches on orthogonal solutions to a class ofmatrix trace equations[J].Journal of Yanbian University,2020,46(02):115-121.
一类矩阵迹方程正交解的一些研究
- Title:
- Some researches on orthogonal solutions to a class of matrix trace equations
- 文章编号:
- 1004-4353(2020)02-0115-07
- Keywords:
- orthogonal matrix; matrix trace equation; explicit expression of solution; orthogonal canonical form; eigenvalue
- 分类号:
- O151.21
- 文献标志码:
- A
- 摘要:
- 应用正交矩阵标准形及其不变性得到了n阶矩阵迹方程(tr A-1)2+1 ≤l <j ≤n(al j-aj l)2=n+1有正交解A=(al j)的充要条件,以及该方程的特征值都为实数或纯虚数的所有正交解的显示表达.由上述结果得到了相应迹方程的对称正交解的通解,并证明了其不存在反对称正交解.
- Abstract:
- By the canonical form of orthogonal matrix and its invariance, we obtain the necessary and sufficient conditions for the orthogonal solutions A=(aij)to an n order matrix trace equation(tr A-1)2+1 ≤l <j ≤n(al j-aj l)2=n+1, and show the explicit expression of all general orthogonal solutions with the eigenvalues be all real or pure imaginary. Then we get the general symmetric orthogonal solutions to the corresponding trace equation, and prove that there is no antisymmetric orthogonal solution.
参考文献/References:
[1] ZHANG T, SINGER A. Disentangling orthogonal matrices[J]. Linear Algebra and Its Applications, 2017,524:159-181.
[2] MENG C J, HU X H, ZHANG L. The skew -symmetric orthogonal solutions of the matrix equation A X=B[J]. Linear Algebra and Its Applications, 2005,402:303-318.
[3] 张磊.正交变换及其反问题[J].湖南数学年刊,1985,5(1):87-93.
[4] 张磊.正交矩阵的反问题及其最佳逼近[J].湖南数学年刊,1990,10(1/2):122-127.
[5] 孟纯军,胡锡炎.对称正交矩阵反问题及其最佳逼近[J].计算数学,2006,27(3):269-280.
[6] 龚涛.两类矩阵方程的正交解研究[D].长沙:湖南大学,2011.
[7] 于娟.几类约束矩阵方程(组)的解及其最小二乘问题[D].上海:上海大学,2014.
[8] 赵冰艳.矩阵方程的特殊解及其最佳逼近问题的研究[D].长沙:湖南科技大学,2015.
[9] ZHANG F Z. Matrix Theory Basic Results and Techniques[M]. 2nd. New York: Springer, 2011.
[10] ZHANG F Z. Matrix Theory Basic Results and Techniques[M]. New York: Springer, 1999.
[11] BERNSTEIN D S. Matrix Mathematics: Theory, Facts, and Formulas[M]. 2nd. Princeton: Princeton University Press,2009.
[12] HORN R A, JOHNSON C R. Matrix Analysis[M]. New York: Cambridge University Press, 1985.
[13] GOODSON G R. The inverse -similarity problem for real orthogonal matrices[J]. Amer Math Monthly, 1997(104):223-230.
[14] 陈梅香,杨忠鹏,晏瑜敏,等.迹为整数的3×3阶正交矩阵的谱[J].北华大学学报(自然科学版),2018,19(2):158-163.
[15] 普罗斯库烈柯夫И В.线性代数习题集解答:第一册[M].周晓钟,译.北京:人民教育出版社,1983.
相似文献/References:
[1]雷丽霞,南华,张军*.内积空间中的互不偏基[J].延边大学学报(自然科学版),2015,41(01):17.
LEI Lixia,NAN Hua,ZHANG Jun*.Mutually unbiased bases in inner product space[J].Journal of Yanbian University,2015,41(02):17.
备注/Memo
收稿日期: 2020-04-15 *通信作者: 杨忠鹏(1947—),男,教授,研究方向为代数学.
基金项目: 国家自然科学基金资助项目(61772292); 福建省自然科学基金资助项目( 2017J01565,2018J01426)