YANG Xu,GUO Hongsong*.Large deviation of random walk indexed bycritical Galton-Watson process[J].Journal of Yanbian University,2020,46(02):101-105155.
基于临界Galton -Watson过程的随机游动的大偏差
- Title:
- Large deviation of random walk indexed by critical Galton-Watson process
- 文章编号:
- 1004-4353(2020)02-0101-06
- 关键词:
- 大偏差概率; 临界Galton -Watson过程; 条件概率; Fuk -Nagaev不等式
- Keywords:
- large deviation probability; critical Galton -Watson process; conditional probability; Fuk -Nagaev inequality
- 分类号:
- O211.65
- 文献标志码:
- A
- 摘要:
- 针对一族独立同分布的随机变量{Xk}的和SZ<sup></sup>n=Z<sup>nk=1Xk(Zn为临界Galton-Watson过程的第n代个体数),利用随机游动和概率论的知识研究了Rn:=SZ<sup></sup>n/Zn的渐近性质以及在{Zn>0}条件下的SZ<sup></sup>n的大偏差.研究结果表明, Rn的规范偏差概率有非退化的极限,并且其大偏差规范化后收敛到正常数.
- Abstract:
- Consider the sum SZ<sup></sup>n=Z<sup>nk=1Xk of a family of independent and identically distributed random variables {Xk}, where Zn is the number of individuals of a critical Galton -Watson process in the generation n. The asymptotic properties of the ratio Rn:=SZ<sup></sup>n/Zn and the large deviation of SZ<sup></sup>n under {Zn>0} are studied by using the properties of random walks and branching processes. The proofs are given in detail that the normal deviation probability of Rn has nondegenerate limit and the large deviation probabilities of Rn after normalization converge to a positive constant.
参考文献/References:
[1] NAGAEV A V. On estimating the expected number of direct descendants of a particle in a branching process[J].Theor Probab Appl, 1967,12:314-320.
[2] PAKES A G. Non -parametric estimation in the Galton -Watson process[J]. Mathematical Biosciences, 1975,26(1/2):1-18.
[3] JACOB C, PECCOUD J. Estimation of the parameters of a branching process from migrating binomial observations[J]. Advances in Applied Probability, 1998,30(4):948-967.
[4] KLAUS F, VITALI W. Large deviations for sums indexed by the generations of a Galton -Watson process[J]. Probability Theory and Related Fields, 2008,141(3):445-470.
[5] PIAU D. Immortal branching Markov processes: averaging properties and PCR applications[J]. Annals of Probability, 2004,32(1A):337-364.
[6] ATHREYA K B, NEY P E. Branching Processes[M]. New York: Springer Berlin Heidelberg, 1972:19-20.
[7] NAGAEV S V, VAKHTEL V I. On the local limit theorem for a critical Galton -Watson process[J]. Theory of Probability and Its Applications, 2006,50(3):400-419.
[8] OOMMEN B J, KIM S W, HORN G. On the estimation of independent binomial random variables using occurrence and sequential information[J]. Pattern Recognition, 2007,40(11):3263-3276.
[9] ATHREYA K B, VIDYASHANKAR A N. Large deviation rates for branching processes. II. The multitype case[J]. Annals of Applied Probability, 1995,5(2):566-576.
[10] CROYDON D, KUMAGAI T. Random walks on Galton -Watson trees with infinite variance offspring distribution conditioned to survive[J]. Electronic Journal of Probability, 2012,13(19):1419-1441.
[11] RUDZKIS R, SAULIS L, STATULEVI V. Large deviations of sums of independent random variables[J]. Lithuanian Mathematical Journal, 1979,19(1):118-125.
[12] 潘生,王月娇,谷玉.Galton -Watson 过程收敛速率的一个充要条件[J].数学理论与应用,2015(4):35-40.
[13] 赵丽华,雷恩林,卢准炜,等.独立同分布随机环境中两性Galton -Watson分支过程灭绝概率的渐近行为[J].应用概率统计,2011,27(3):289-296.
备注/Memo
收稿日期: 2020-06-01 基金项目: 国家自然科学基金资助项目(11801556)
*通信作者: 国洪松(1989—),女,博士,讲师,研究方向为分支过程和随机树.