XUE Wenjuan.An inexact smoothing Newton algorithm forthe second-order cone complementary problems[J].Journal of Yanbian University,2019,45(03):241-245.
求解二阶锥互补问题的一种非精确光滑化牛顿算法
- Title:
- An inexact smoothing Newton algorithm for the second-order cone complementary problems
- 文章编号:
- 1004-4353(2019)03-0241-05
- Keywords:
- second-order cone complementary problem; smoothing function; inexact smoothing Newton method; Jordan algebra
- 分类号:
- O221
- 文献标志码:
- A
- 摘要:
- 为解决二阶锥互补问题,构造了一种新的非精确光滑化牛顿算法.在适当的条件下,该算法具有全局收敛性,并且由该算法所得序列的任一聚点均是二阶锥规划问题的解.数值试验表明,该算法可有效求解较大规模的二阶锥互补问题.
- Abstract:
- To solve the second-order cone complementary programming problem, we construct an inexact smoothing Newton algorithm. Under some proper assumptions, it proves that the proposed algorithm is globally convergent and any accumulation point of the generated sequence is a solution to the second-order cone programming. The numerical experiment shows that the proposed algorithm is effective to solve the big second-order cone programming.
参考文献/References:
[1] CHEN X, TSENG P. Non-interior continuation methods for solving semidefinite complementarity problems[J]. Math Program A, 2003,95:431-474.
[2] QI L, SUN D. Smoothing funchtions and smoothing Newton method for complementarity and variational inequality problems[J]. J Opt Theory and Appl, 2002,113(1):121-147.
[3] CHI X N, LIU S Y. A one-step smoothing Newton method for second-order cone programming[J]. J Comput Appl Math, 2009,223:114-123.
[4] CHI X N, LIU S Y. A non-interior continuation method for second-order cone programming[J]. Optimization, 2009,58:965-979.
[5] FANG L, HE G P, HU Y H. A new smoothing Newton-type method for second-order cone programming problems[J]. Appl Math Comput, 2009,215:1020-1029.
[6] FUKUSHIMA M, LUO Z, TSENG P. Smoothing functions for second-order-cone complementarity problems[J]. SIAM J Optim, 2002,12:436-460.
[7] ZHANG J, ZHANG K. A variant smoothing Newton method for P0-NCP based on a new smoothing function[J]. J Comput Appl Math, 2009,225:1-8.
[8] ZARANTONELLO E H. Projections on Convex Sets in Hilbert Space and Spectral Theory. In Contributions to Nonlinear Functional Analysis[M]. New York: Academic Press, 1971:237-424.
[9] 芮绍平,张杰.一种具有全局收敛性的求解二阶锥规划的非精确光滑算法[J].系统科学与数学,2012,32:257-264.
备注/Memo
收稿日期: 2019-03-28
基金项目: 福建省教育厅青年基金资助项目(JAT170183)
作者简介: 薛文娟(1981—),女,讲师,研究方向为运筹优化.