CHEN Zhirui,HOU Chengmin*.Lyapunov type inequalities for fractional q -differenceequations with Robin boundary conditions[J].Journal of Yanbian University,2019,45(01):6-10.
带有Robin边界条件的分数阶q 差分方程的Lyapunov型不等式
- Title:
- Lyapunov type inequalities for fractional q -difference equations with Robin boundary conditions
- 文章编号:
- 1004-4353(2019)01-0006-05
- 关键词:
- Robin边界条件; 分数阶q-差分; Lyapunov型不等式
- 分类号:
- O175.6
- 文献标志码:
- A
- 摘要:
- 考虑带有Robin边界条件的分数阶q -差分方程CDαqu(t)+X(t)u(t)=0(0<t<1)所满足的Lyapunov型不等式.首先利用Robin边界条件得到该方程解的表达式,然后通过分析格林函数得到格林函数的估值,进而得到了该方程相应的Lyapunov型不等式.
- Abstract:
- We consider the Lyapunov type inequalities satisfied by the fractional q -difference equation CDαqu(t)+X(t)u(t)=0(0<t<1)with Robin boundary conditions. The Robin boundary conditions are used to get the expressions of solution for the equation. By analyzing Green's function, we get the estimate of the Green's function. Further the corresponding Lyapunov type inequalities are obtained.
参考文献/References:
[1] LYAPUNOV A M. Probleme général de la stabilité du mouvement[J]. Annals of Mathematics Studies, 1907(2):203.
[2] FERREIRA R A C. A Lyapunov-type inequality for a fractional boundary value problem[J]. Fractional Calculus and Applied Analysis, 2013,16(4):978.
[3] FERREIRA R A C. On a Lyapunov-type inequality and the zeros of a certain Mittag-Leffler function[J]. Journal of Mathematical Analysis and Applications, 2014,412(2):1058.
[4] FERREIRA R A C. Nontrivial solutions for fractional q-difference boundary value problems[J]. Electron J Qual Theory Differ Equ, 2010,47(1):429.
[5] TARIBOON J, NTOUYAS S K. Quantum integral inequalities on finite intervals[J]. J Inequal Appl, 2014,2014:121.
[6] TARIBOON J, NTOUYAS S K, AGARWAL P. New concepts of fractional quantum calculus and applications to impulsive fractional q-difference equations[J]. Adv Differ Equ, 2015,2015(1):1-19.
[7] MOHAMED Jleli, BESSEM Samet. A Lyapunov-type inequality for a fractional q-difference boundary value problem[J]. Nonlinear Sci, 2016,16(4):978.
[8] RAJKOVIC P, MARINKOVIC S D, STANKOVIC M S. On q-analogues of Caputo derivative and Mittag-Leffler function[J]. Fract Calc Appl Anal, 2007,10(4):359-373.
备注/Memo
收稿日期: 2018-10-12
*通信作者: 侯成敏(1963—),女,教授,研究方向为微分理论及其应用.