[1]陈祉睿,侯成敏*.带有Robin边界条件的分数阶q 差分方程的Lyapunov型不等式[J].延边大学学报(自然科学版),2019,45(01):6-10.
 CHEN Zhirui,HOU Chengmin*.Lyapunov type inequalities for fractional q -differenceequations with Robin boundary conditions[J].Journal of Yanbian University,2019,45(01):6-10.
点击复制

带有Robin边界条件的分数阶q 差分方程的Lyapunov型不等式

参考文献/References:


[1] LYAPUNOV A M. Probleme général de la stabilité du mouvement[J]. Annals of Mathematics Studies, 1907(2):203.
[2] FERREIRA R A C. A Lyapunov-type inequality for a fractional boundary value problem[J]. Fractional Calculus and Applied Analysis, 2013,16(4):978.
[3] FERREIRA R A C. On a Lyapunov-type inequality and the zeros of a certain Mittag-Leffler function[J]. Journal of Mathematical Analysis and Applications, 2014,412(2):1058.
[4] FERREIRA R A C. Nontrivial solutions for fractional q-difference boundary value problems[J]. Electron J Qual Theory Differ Equ, 2010,47(1):429.
[5] TARIBOON J, NTOUYAS S K. Quantum integral inequalities on finite intervals[J]. J Inequal Appl, 2014,2014:121.
[6] TARIBOON J, NTOUYAS S K, AGARWAL P. New concepts of fractional quantum calculus and applications to impulsive fractional q-difference equations[J]. Adv Differ Equ, 2015,2015(1):1-19.
[7] MOHAMED Jleli, BESSEM Samet. A Lyapunov-type inequality for a fractional q-difference boundary value problem[J]. Nonlinear Sci, 2016,16(4):978.
[8] RAJKOVIC P, MARINKOVIC S D, STANKOVIC M S. On q-analogues of Caputo derivative and Mittag-Leffler function[J]. Fract Calc Appl Anal, 2007,10(4):359-373.

备注/Memo

收稿日期: 2018-10-12
*通信作者: 侯成敏(1963—),女,教授,研究方向为微分理论及其应用.

更新日期/Last Update: 2019-05-20