LIN Min.Self-adaptive improved artificial fish swarm algorithmwith changing step and crowding factor[J].Journal of Yanbian University,2018,44(04):322-327.
变步长和拥挤度因子的自适应人工鱼群算法
- Title:
- Self-adaptive improved artificial fish swarm algorithm with changing step and crowding factor
- Keywords:
- artificial fish swarm algorithm; subgroup; moving step length; weight factor; crowding factor; mutation strategy
- 分类号:
- TP18
- 文献标志码:
- A
- 摘要:
- 为了改进传统的人工鱼群算法会随着迭代的深入而导致算法易陷入局部最优的问题,以及固定的参数导致算法收敛慢和求解精度不高的问题,提出了一种改进的人工鱼群算法.首先结合迭代次数,为移动步长引入一个权值; 然后以每条人工鱼的视野范围所构成的子群为小生境,结合子群最优解与当前人工鱼状态,为拥挤度因子引入一个变异策略.数值实验结果表明,本文提出的算法收敛速度快、精度高、鲁棒性强,优于传统的人工鱼群算法和文献[4]提出的算法.
- Abstract:
- In order to improve the traditional artificial fish swarm algorithm, which is easy to fall into local optimum, and the fixed parameters lead to slow convergence and low precision of the algorithm, during the deepening of the iteration, an improved artificial fish swarm algorithm is proposed. Firstly, by combining the number of iterations, a weight value is introduced for the moving step. Then, taking the subgroup of each artificial fish as the niche, combining the optimal solution of the subgroup with the current state of artificial fish, a variation strategy was introduced for crowding factor. The results of numerical experiments show that the proposed algorithm has the advantages of fast convergence, high accuracy and strong robustness, and is superior to the traditional artificial fish swarm algorithm and the algorithm proposed in literature [4].
参考文献/References:
[1] 李晓磊,邵之江,钱积新,等.一种基于动物自治体的寻优模式:鱼群算法[J].系统工程理论与实践,2002,22(11):32-38.
[2] 朱旭辉.变步长自适应的改进人工鱼群算法[J].计算机科学,2015,42(2):210-216.
[3] 吴昌友.一种改进的人工鱼群优化算法[J].智能系统学报,2015,10(3):465-469.
[4] 易正俊.自适应重生鱼群优化算法[J].计算机应用与软件,2016,33(6):227-230.
[5] 廖孝勇,李尚键,孙棣华,等.一种基于膜计算的改进人工鱼群算法[J].小型微型计算机系统,2014,35(5):1142-1146.
[6] 李君,梁昔明.人工鱼群算法收敛速度改进优化仿真[J].计算机仿真,2018,35(1):232-238.
[7] 张严,楚晓丽.一种改进的人工鱼群算法[J].计算机系统应用,2011,20(5):199-201.
[8] 刘东林,李乐乐.一种新颖的改进人工鱼群算法[J].计算机科学,2017,44(4):281-286.
[9] 梁昔明,李君.改进步长和视野的人工鱼群算法[J].北京建筑大学学报,2017,33(2):47-53.
[10] 费腾,张立毅.配送中心选址分配问题的DNA- 鱼群算法研究[J].计算机工程与科学,2016(5):938-945.
[11] 任可强,高晓林.基于AFSA和PSO融合优化的AdaBoost人脸检测算法[J].小型微型计算机系统,2016(4):861-865.
[12] 王联国,施秋红.人工鱼群算法的参数分析[J].计算机工程,2010,36(24):169-171.
[13] Thomsen R. Multimodal optimization using crowding-based differential evolution[C]//IEEE Congr Evol Comput.New Jersey: IEEE, 2004:1382-1389.
[14] Li X. Efcient differential evolution using speciation for multimodal function optimization[C]//The 7th Annual Conf on Genetic and Evolutionary Computation. New York: ACM Press, 2005:873-880.
[15] Cheng M Y, Lien L C. Hybrid artificial intelligence -based PBA for benchmark functions and facility layout design optimization[J]. Journal of Computing in Civil Engineering, 2012,26(5):612-624.
备注/Memo
收稿日期: 2018-09-13 基金项目: 福建省教育厅资助项目(JAT160440)
作者简介: 林敏(1980—),女,副教授,研究方向为智能计算、图像处理与模式识别.