ZHANG Xiuying,FENG Yu.Least-squares solutions for Hermitian R-skew symmetricmatrices of matrix equation AXAH=B[J].Journal of Yanbian University,2018,44(04):310-314.
矩阵方程AXAH=B的Hermitian R -反对称最小二乘解
- Title:
- Least-squares solutions for Hermitian R-skew symmetric matrices of matrix equation AXAH=B
- 关键词:
- 最小二乘解; 极小范数; Hermitian R-反对称; 奇异值分解
- Keywords:
- least-squares solutions; minimal norm; Hermitian R -skew symmetric; singular value decomposition
- 分类号:
- O241.2
- 文献标志码:
- A
- 摘要:
- 研究了复矩阵方程AXAH=B的Hermitian R-反对称形式的最小二乘解.首先利用奇异值分解得到了Hermitian R-反对称最小二乘解的解析表达式,然后利用商奇异值分解得到了极小范数最小二乘解的一般形式.
- Abstract:
- Least-squares solutions to matrix equation AXAH=B in the set of Hermitian R-skew symmetric matrices are considered. Using SVD, analytic expressions for least-squares solutions are obtained, then general form for the minimal norm least-squares solutions is derived by Q -SVD.
参考文献/References:
[1] Liu Y H, Tian Y G, Takane Y. Ranks of Hermitian and skew-Hermitian solutions to the matrix equation AXA 䥺Symbolj@@ =B [J]. Linear Algebra Appl, 2009,431(12):2359-2372.
[2] Tian Y. Least-squares solutions and least-rank solutions of the matrix equation AXA 䥺Symbolj@@ =B and their relations[J]. Numer Linear Algebra and Appl, 2013,20(5):713-722.
[3] Wei M, Wang Q. On rank-constrained Hermitian nonnegative-definite Least squares solutions to the matrix equation AXAH=B [J]. Taylor & Francis, inc, 2007,84(6):945-952.
[4] Zhang X, Cheng M. The rank-constrained Hermitian nonnegative-definite and positive-definite solutions to the matrix equation AXA 䥺Symbolj@@ =B [J]. Linear Algebra and its Appl, 2003,370:163-174.
[5] Xiao Q F, Hu X Y, Zhang L. The anti-symmetric ortho-symmetric solution of the matrix equation ATXA=D[J]. Electronic Journal of Linear Algebra, 2009,18(1):21-29.
[6] Trench William F. Hermitian, hermitian R-symmetric, and hermitian R-skew symmetric Procrustes problems[J]. Linear Algebra and its Appl, 2004,387(5):83-98.
[7] Shim S Y, Chen Y. Least squares solution of matrix equation AXB*+CYD*=E [J]. SIAM J Matrix Anal Appl, 2003,24(3):802-808.
[8] 魏木生.广义最小二乘问题的理论和计算[M].北京:科学出版社,2016:6-9.
备注/Memo
收稿日期: 2018-06-24 基金项目: 长春师范大学自然科学研究项目(长师[2016]第03号)
作者简介: 张秀英(1984—),女,助教,研究方向为矩阵分析与计算.