[1]张丽丽.一类具有常数收获率的捕食者-食饵系统的Turing不稳定性[J].延边大学学报(自然科学版),2018,44(04):306-309.
 ZHANG Lili.The Turing instability in a class of predator-prey system with constant harvesting rate[J].Journal of Yanbian University,2018,44(04):306-309.
点击复制

一类具有常数收获率的捕食者-食饵系统的Turing不稳定性

参考文献/References:


[1] Xiao D, Ruan S. Bogdanov-Takens bifurcations in predator-prey systems with constant-rate harvesting[J]. Fields Institute Communications, 1999,21:493-506.
[2] Gupta R P, Chandra P. Bifurcation analysis of modified Leslie-Gower predator-prey model with Michaelis-Menten type prey harvesting[J]. Journal of Mathematical Analysis & Applications, 2013,398(1):278-295.
[3] Sen M, Srinivasu PDN, Banerjee M. Global dynamics of an additional food provided predator-prey system with constant harvest in predators[J]. Applied Mathematics & Computation, 2015,250:193-211.
[4] Lee J, Baek H. Dynamics of a Beddington-DeAngelis type predator-prey system with constant rate harvesting[J]. Electronic Journal of Qualitative Theory of Differential Equations, 2017,2017(1):1-20.
[5] Jana S, Guria S, Das U, et al. Effect of harvesting and infection on predator in a prey-predator system[J]. Nonlinear Dynamics, 2015,81(1/2):1-14.
[6] Baek H. Spatiotemporal dynamics of a predator-prey system with linear harvesting rate[J]. MathematicalProblems in Engineering, 2014,2014(3):1-9.
[7] Wei C, Chen L. Periodic solution and heteroclinic bifurcation in a predator-prey system with Allee effect and impulsive harvesting[J]. Nonlinear Dynamics, 2014,76(2):1109-1117.
[8] Faria T. Hopf bifurcation for a delayed predator-prey model and the effect of diffusion[J]. Birkhäuser Boston, 2001,254(2):433-463.
[9] Tang X, Song Y. Bifurcation analysis and Turing instability in a diffusive predator-prey model with herd behavior and hyperbolic mortality[J]. Chaos Solitons & Fractals the Interdisciplinary Journal of Nonlinear Science & Nonequilibrium & Complex Phenomena, 2015,81:303-314.
[10] Tang X, Song Y, Zhang T. Turing-Hopf bifurcation analysis of a predator-prey model with herd behavior and cross-diffusion[J]. Nonlinear Dynamics, 2016,86(1):1-17.
[11] Song Y, Zou X. Spatiotemporal dynamics in a diffusive ratio-dependent predator-prey model near a Hopf-Turing bifurcation point[J]. Computers & Mathematics with Applications, 2014,67(10):1978-1997.
[12] Ghorai S, Poria S. Turing patterns induced by cross-diffusion in a predator-prey system in presence of habitat complexity[J]. Chaos Solitons & Fractals, 2016,91:421-429.

相似文献/References:

[1]张丽丽,麻作军.一类带收获率的捕食者- 食饵扩散模型的稳定性[J].延边大学学报(自然科学版),2022,(04):336.
 ZHANG Lili,MA Zuojun.Stability in a Lotka -Volterra predator - prey model with diffusion and harvesting rate[J].Journal of Yanbian University,2022,(04):336.

备注/Memo

收稿日期: 2018-05-17
作者简介: 张丽丽(1985—),女,讲师,研究方向为偏微分方程与生物数学.

更新日期/Last Update: 2018-12-30