GE Qi,HOU Chengmin.Finite time stability of a class of nonlinear delayfractional q-difference systems[J].Journal of Yanbian University,2018,44(03):189-193.
一类非线性时滞分数阶 q -差分系统的有限时间稳定性
- Title:
- Finite time stability of a class of nonlinear delay fractional q-difference systems
- Keywords:
- delay fractional q-difference; q-Mittag-Leffler function; the Gronwall inequality; finite time stability
- 分类号:
- O175.6
- 文献标志码:
- A
- 摘要:
- 研究了一类非线性时滞分数阶q-差分系统的有限时间稳定性.首先,证明了一类非线性时滞Caputo型分数阶q-差分系统解的存在唯一性; 其次,利用q-Mittag-Leffler函数和Gronwall不等式建立了该时滞分数阶q-差分系统有限时间稳定性的充分条件.最后通过举例表明了本文主要结果的有效性和实用性.
- Abstract:
- In this paper, finite time stability of a class of nonlinear delay fractional q-difference systems is studied. Firstly, we prove the existence and uniqueness for the solutions of a class of nonlinear delay Caputo fractional q-difference systems. Secondly, by using q-Mittag-Leffler function and the Gronwall inequality, sufficient conditions for the finite time stability of the delay fractional q-difference system is obtained. Finally, an example is presented to illustrate the validity and practicability of our main results.
参考文献/References:
[1] Atc F M, Eloe P W. Fractional q-calculus on a time scale[J]. J Nonlinear Math Phys, 2007,14(3):333-344.
[2] Abdeljawad T, Baleanu D. Caputo q-fractional initial value problems and a q-analogue Mittag-Leffler function[J]. Commun Nonlinear Sci Numer Simul, 2011,16(12):4682-4688.
[3] Zhao Yulin, Chen Haibo, Zhang Qiming. Existence results for fractional q-difference equations with nonlocal q-integral boundary conditions[J]. Advances in Difference Equations, 2013,2013(1):1-15.
[4] 孙明哲,韩筱爽.一类分数阶q-差分边值问题的正解[J].延边大学学报(自然科学版),2013,39(4):252-255.
[5] Ahmad B, Nieto J J, Alsaedi A, et al. Existence of solutions for nonlinear fractional q-difference integral equations with two fractional orders and nonlocal four-point boundary conditions[J]. Journal of the Franklin Institute, 2014,351(5):2890-2909.
[6] Agarwal R P, Ahmad B, Alsaedi A, et al. Existence theory for q-antiperiodic boundary value problems of sequential q-fractional integrodifferential equations[J]. Abstract and Applied Analysis, 2014,2014(4):1-12.
[7] Sitthiwirattham Thanin. On nonlocal fractional q-integral boundary value problems of fractional q-difference and fractional q-integrodifference equations involving different numbers of order and q[J]. Boundary Value Problems, 2016,2016(1):1-19.
[8] Abdeljawad T, Benli B, Baleanu D. A generalized q-Mittag-Leffler function by q-Caputo fractional linear equations[J]. Abstr Appl Anal, 2012,2012(1):1-11.
[9] Fahd Jarad, Thabet Abdeljawad, Dumitru Baleanu. Stability of q-fractional non-autonomous systems[J]. Nonlinear Analysis: Real World Applications, 2013,14(1):780-784.
[10] Abdeljawad T, Alzabut J. The q-fractional analogue for Gronwall-type inequality[J]. Journal of Function Spaces and Applications, 2013,8(4):113-129.
[11] Abdeljawad T, Alzabut J, Baleanu D. A generalized q-fractional Gronwall inequality and its applications to nonlinear delay q-fractional difference systems[J]. Journal of Inequalities and Applications, 2016,2016(1):1-13.
[12] Zhang Xiuyun. Some results of linear fractional order time-delay system[J]. Applied Mathematics and Computation, 2008,197(1):407-411.
备注/Memo
收稿日期: 2018-06-17
作者简介: 葛琦(1975—),女,副教授,研究方向为微分方程理论及应用.