SHEN Lin.Attribute reduction of variable precision neighborhood rough sets based on improved identification matrix[J].Journal of Yanbian University,2018,44(02):149-154.
基于改进辨识矩阵的变精度邻域粗糙集属性约简
- Title:
- Attribute reduction of variable precision neighborhood rough sets based on improved identification matrix
- 分类号:
- TP181
- 文献标志码:
- A
- 摘要:
- 提出一种用于变精度邻域粗糙集,可以大幅减少时间复杂度的属性约简算法.该算法基于一种改进的辨识矩阵.首先用辨识矩阵同时记录决策一致和不一致的数据,然后用二进制位运算计算样本的邻域,最后获得可以保持下近似分布不变的属性约简.实验结果证明,本文算法不仅能够大幅减少属性约简时间,而且精度上总体优于NBRS算法和LDNRS算法.
- Abstract:
- In this paper, an attribute reduction algorithm is proposed for variable precision neighborhood rough sets, which can greatly reduce the time complexity. The algorithm is based on an improved discernibility matrix. Firstly, consistent and inconsistent decision data is recorded by the matrix at the same time. Then, neighborhood of the sample is computed by binary bit operation. Finally, an attribute reduction that can keep the lower approximation distribution unchanged can be obtained. Experimental results show that this algorithm can greatly reduce the needed time of attribute reduction, and is generally better than NBRS and LDNRS in accuracy.
参考文献/References:
[1] Pawlak Z. Rough-Sets: Theoretical Aspects of Reasoning About Data[M]. Dordrecht: Kluwer Academic Publisher, 1991.
[2] Ziarko W. Variable precision rough set model[J]. Journal of Computer System Science, 1993,46(1):39-59.
[3] Hu Qinghua, Yu Daren, XIE Zongxia. Numerical attribute reduction based on neighborhood granulation and rough approximation[J]. Journal of Software, 2008,19(3):640-649.
[4] Hu Qinghua, Zhao Hui, Yu Daren. Efficient symbolic and numerical attribute reduction with neighborhood rough sets[J]. PR & AI, 2008,21(6):732-738.
[5] 沈林,陈建辉.基于下近似分布的变精度邻域粗糙集属性约简算法[J].贵州大学学报(自然科学版),2017,34(4):53-58.
[6] 杨燕燕.变精度粗糙集属性约简理论与算法[D].北京:华北电力大学,2013.
[7] 李艳,郭娜娜,赵浩.基于变精度和浓缩布尔矩阵的属性约简[J].计算机科学,2017,44(6A):70-74.
[8] 林俊伟,叶东毅.基于邻域辨识矩阵的属性约简增量式算法[J].计算机应用,2009,29(6):119-121.
[9] 杨云霞,杨占勇.二进制分辨矩阵在连续属性约简中的研究[J].计算机与数字工程,2012,40(1):19-24.
备注/Memo
收稿日期: 2018-03-08
基金项目: 福建省教育厅项目(JA15458)
作者简介: 沈林(1983—),男,讲师,研究方向为人工智能、机器学习、粗糙集理论.