ZHU Sheng,HUANG Jianhua,CHEN Lijun.Strong convergence theorems and its applications for equilibrium problems and Bregman generalized weak relatively nonexpansive mapping[J].Journal of Yanbian University,2018,44(02):95-102.
Bregman广义弱相对非扩张与均衡问题的强收敛定理及其应用
- Title:
- Strong convergence theorems and its applications for equilibrium problems and Bregman generalized weak relatively nonexpansive mapping
- 关键词:
- Bregman广义弱相对非扩张; 不动点问题; 均衡问题
- Keywords:
- Bregman generalized weak relatively nonexpansive; fixed point problem; equilibrium problem
- 分类号:
- O177.91
- 文献标志码:
- A
- 摘要:
- 在自反的Banach空间中,引入Bregman广义弱相对非扩张映射概念,针对均衡问题和Bregman广义弱相对非扩张映射的不动点问题的公共解,构造了一种新的迭代算法,并在适当的条件下得到了该算法的强收性.最后,将本文结论应用在极大单调算子的零点问题上.
- Abstract:
- In this paper, we introduce a concept of generalized weak relatively nonexpansive mapping and construct a new algorithms for finding a common solution to equilibrium problem and fixed point of the mapping that generalize the concept of nonexpansivity in reflexive real Banach spaces. Moreover, the strong convergence of the proposed algorithms is proved under appropriate conditions. Finally, the application to zero point problem of maximal monotone operators is given by the result.
参考文献/References:
[1] Blum E, Oettli W. From optimization and variational inequalities to equilibrium problems[J]. Math Stud, 1994,63:123-145.
[2] 沈金良,黄建华.渐进非扩张映射混合迭代序列的均衡问题和不动点问题[J].福州大学学报(自然科学版),2016,44(5):622-626.
[3] 朱胜,黄建华,万丙晟.Bregman弱相对非扩张映象与均衡问题的强收敛定理[J].四川大学学报(自然科学版),2016,53(3):471-477.
[4] Bauschke H H, Borwein J M, Combettes P L. Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces[J]. Comm Contemp Math, 2001,3(4):615-647.
[5] Takahashi S, Takahashi W. Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces[J]. Math Anal Appl, 2007,331(1):506-518.
[6] Censor Y, Lent A. An iterative row-action method for interval convex programming[J]. Optim Theory Appl, 1981,34(3):321-353.
[7] Bregman L M. The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming[J]. USSR Comput Math Math Phys, 1967,7(3):200-217.
[8] Butnariu D, Iusem A N. Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization[M]. Dordrecht, Boston: Kluwer Academic Publishers, 2000.
[9] Reich S, Sabach S. Two strong convergence theorems for Bregman strongly nonexpansive operators in reflexive Banach spaces[J]. Nonlinear Anal, 2010,73(1):122-135.
[10] Reich S, Sabach S. Two strong convergence theorems for a proximal method in reflexive Banach spaces[J]. Numer Funct Anal Optim, 2010,31(1):22-44.
[11] Butnariu D, Resmerita E. Bregman distances, totally convex functions and a method for solving operator equations in Banach spaces[J]. Abstr Appl Anal, 2006,2006(3):1-39.
[12] Combettes P L, Hirstoaga S A. Equilibrium programming in Hilbert spaces[J]. Nonlinear Convex Anal, 2005,6(1):117-136.
[13] Kassay G, Reich S, Sabach S. Iterative methods for solving systems of variational inequalities in reflexive Banach spaces[J]. SIAM J Optim, 2011,21(4):1319-1344.
备注/Memo
收稿日期: 2018-05-12
基金项目: 福建省中青年教师教育科研项目(JAT170889)
作者简介: 朱胜(1990—),男,助教,研究方向为非线性分析.