[1]余胜斌.具反馈控制和Holling-III的修正Leslie-Gower捕食系统的持久性[J].延边大学学报(自然科学版),2018,44(01):49-53.
 YU Shengbin.Permanence of a modified Leslie-Gower model withHolling-type III and feedback controls[J].Journal of Yanbian University,2018,44(01):49-53.
点击复制

具反馈控制和Holling-III的修正Leslie-Gower捕食系统的持久性

参考文献/References:

[1] Aziz-Alaoui M A, Daher Okiye M. Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes[J]. Applied Mathematics Letters, 2003,16(7):1069-1075.
[2] Yu Shengbin. Global asymptotic stability of a predator-prey model with modified Leslie-Gower and Holling-type II schemes[J]. Discrete Dynamics in Nature and Society, 2012, Article ID 208167:1-8.
[3] Yu Shengbin. Global stability of a modified Leslie-Gower model with Beddington-DeAngelis functional response[J]. Advances in Difference Equations, 2014,84:1-14.
[4] Zhu Yanling, Wang Kai. Existence and global attractivity of positive periodic solutions for a predator-prey model with modified Leslie-Gower Holling-type II schemes[J]. Journal of Mathematical Analysis and Applications, 2011,384(2):400-408.
[5] Yu Shengbin, Chen Fengde. Almost periodic solution of a modified Leslie-Gower predator-prey model with Holling-type II schemes and mutual interference[J]. International Journal of Biomathematics, 2014,7(3):1-15.
[6] 朱艳玲.具有Leslie-Gower和Holling-III型功能反应的捕食-食饵模型的一致持续生存[J].宁夏师范学院学报, 2013,34(3):7-9.
[7] 陈江彬.具反馈控制和Holling-III类功能反应的修正Leslie-Gower捕食系统研究[J].延边大学学报(自然科学版),2017,43(3):189-194.
[8] 王颖,陈江彬.具反馈控制和Holling -Ⅱ类功能性反应的修正Leslie-Gower捕食系统的持久性[J].福州大学学报(自然科学版),2016,44(2):150-155.
[9] 余胜斌,张杰华.具时滞和反馈控制的修正Leslie-Gower离散系统的持久性[J].应用泛函分析学报,2014,16(3):244-249.
[10] Chen Fengde, Yang Jinghui, Chen Lijuan. Note on the persistent property of a feedback control system with delays[J]. Nonlinear Analysis: Real World Applications, 2010,11(2):1061-1066.
[11] Yu Shengbin. Extinction for a discrete competition system with feedback controls[J]. Advances in Difference Equations, 2017,9:1-9.
[12] Chen Fengde, Li Zhong, Huang Yunjin. Note on the permanence of a competitive system with infinite delay and feedback controls[J]. Nonlinear Analysis: Real World Applications, 2007,8(2):680-687.

相似文献/References:

[1]陈丽君.受媒体信息影响的一类随机传染病模型的研究[J].延边大学学报(自然科学版),2024,(01):43.
 CHEN Lijun.Research on a stochastic epidemic model influenced by media information[J].Journal of Yanbian University,2024,(01):43.

备注/Memo

收稿日期: 2018-01-22
作者简介: 余胜斌(1984—),男,副教授,研究方向为生物数学.
基金项目: 2016年度福建省高校杰出青年科研人才培育计划项目; 福建省自然科学基金资助项目(2015J01012, 2015J01019)

更新日期/Last Update: 2018-03-20