YU Shengbin.Permanence of a modified Leslie-Gower model withHolling-type III and feedback controls[J].Journal of Yanbian University,2018,44(01):49-53.
具反馈控制和Holling-III的修正Leslie-Gower捕食系统的持久性
- Title:
- Permanence of a modified Leslie-Gower model with Holling-type III and feedback controls
- 关键词:
- 持久性; Leslie-Gower; 反馈控制; Holling-III型功能性反应
- 分类号:
- O175.14
- 文献标志码:
- A
- 摘要:
- 运用微分不等式研究了具有反馈控制变量和Holling-III型功能性反应的修正Leslie-Gower捕食系统的持久性问题,得到了一组新的保证该系统持久的充分性条件.研究结果表明,反馈控制变量不会影响系统的持久性,该结果补充了文献[6]并改进了文献[7]的结果.
- Abstract:
- A modified Leslie-Gower predation system with Holling-type III response function and feedback controls is studied. By applying the differential inequality theory, a new sufficient conditions which guarantee the permanence of the system are obtained. The results indicate that feedback control variables have no influence on the persistent property of the system, this results not only supplement the literature [6] but also improve the literature [7].
参考文献/References:
[1] Aziz-Alaoui M A, Daher Okiye M. Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes[J]. Applied Mathematics Letters, 2003,16(7):1069-1075.
[2] Yu Shengbin. Global asymptotic stability of a predator-prey model with modified Leslie-Gower and Holling-type II schemes[J]. Discrete Dynamics in Nature and Society, 2012, Article ID 208167:1-8.
[3] Yu Shengbin. Global stability of a modified Leslie-Gower model with Beddington-DeAngelis functional response[J]. Advances in Difference Equations, 2014,84:1-14.
[4] Zhu Yanling, Wang Kai. Existence and global attractivity of positive periodic solutions for a predator-prey model with modified Leslie-Gower Holling-type II schemes[J]. Journal of Mathematical Analysis and Applications, 2011,384(2):400-408.
[5] Yu Shengbin, Chen Fengde. Almost periodic solution of a modified Leslie-Gower predator-prey model with Holling-type II schemes and mutual interference[J]. International Journal of Biomathematics, 2014,7(3):1-15.
[6] 朱艳玲.具有Leslie-Gower和Holling-III型功能反应的捕食-食饵模型的一致持续生存[J].宁夏师范学院学报, 2013,34(3):7-9.
[7] 陈江彬.具反馈控制和Holling-III类功能反应的修正Leslie-Gower捕食系统研究[J].延边大学学报(自然科学版),2017,43(3):189-194.
[8] 王颖,陈江彬.具反馈控制和Holling -Ⅱ类功能性反应的修正Leslie-Gower捕食系统的持久性[J].福州大学学报(自然科学版),2016,44(2):150-155.
[9] 余胜斌,张杰华.具时滞和反馈控制的修正Leslie-Gower离散系统的持久性[J].应用泛函分析学报,2014,16(3):244-249.
[10] Chen Fengde, Yang Jinghui, Chen Lijuan. Note on the persistent property of a feedback control system with delays[J]. Nonlinear Analysis: Real World Applications, 2010,11(2):1061-1066.
[11] Yu Shengbin. Extinction for a discrete competition system with feedback controls[J]. Advances in Difference Equations, 2017,9:1-9.
[12] Chen Fengde, Li Zhong, Huang Yunjin. Note on the permanence of a competitive system with infinite delay and feedback controls[J]. Nonlinear Analysis: Real World Applications, 2007,8(2):680-687.
相似文献/References:
[1]陈丽君.受媒体信息影响的一类随机传染病模型的研究[J].延边大学学报(自然科学版),2024,(01):43.
CHEN Lijun.Research on a stochastic epidemic model influenced by media information[J].Journal of Yanbian University,2024,(01):43.
备注/Memo
收稿日期: 2018-01-22
作者简介: 余胜斌(1984—),男,副教授,研究方向为生物数学.
基金项目: 2016年度福建省高校杰出青年科研人才培育计划项目; 福建省自然科学基金资助项目(2015J01012, 2015J01019)