DONG Jucheng,JI Xin*.Entanglement concentration for multipartite spin entangledstates via Heisenberg XX model[J].Journal of Yanbian University,2018,44(01):31-34.
基于海森堡XX模型的多粒子自旋纠缠浓缩
- Title:
- Entanglement concentration for multipartite spin entangled states via Heisenberg XX model
- Keywords:
- Heisenberg model; entanglement concentration; GHZ states; W states
- 分类号:
- O431
- 文献标志码:
- A
- 摘要:
- 利用自旋链系统的海森堡相互作用,提出了关于多粒子非最大自旋纠缠态的纠缠浓缩方案.研究结果表明,仅利用自然的自旋相互作用和简单的单自旋量子比特测量即可实现GHZ态和W态的纠缠浓缩,因而本方案在实际的物理系统中更容易实现.
- Abstract:
- This paper proposes entanglement concentration schemes for multipartite entangled states based on the Heisenberg interaction in spin system. The analysis shows that the entanglement concentration schemes can be realized only with natural spin interaction and single-qubit measurements. So the presented schemes are feasible for actual physical systems with current technology.
参考文献/References:
[1] Bennett C H, Brassard G, Crépeau C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen chnannels[J]. Phys Rev Lett, 1993,70:1895-1899.
[2] Zheng S B, Guo G C. Efficient scheme for two-atom entanglement and quantum information processing in cavity QED[J]. Phys Rev Lett, 2000,85:2392-2395.
[3] Horodecki R, Horodecki P, Horodecki M, et al.Quantum entanglemnet[J]. Rev Mod Phys, 2009,81:865-942.
[4] Greenberger D M, Horne M A, Shimony A, et al. Bell's theorem without inequalities[J]. American Journal of Phusics, 1990,58(12):1131-1143.
[5] Dür W, Vidal G, Cirac J I. Three qubits can be entangled in two inequivalent ways[J]. Phys Rev A, 2000,62(6):062314.
[6] Nielsen M A, Chuang I L. Quantum Computation and Quantum Information[M]. New York: Cambridge University Press, 2000.
[7] Bennett C H, Bernstein H J, Popescu S, et al. Concentrating partial entanglement by local operations[J]. Phys Rev A, 1996,53:2046.
[8] Bennett C H, Brassard G, Popescu S, et al. Purification of noisy entanglement and faithful teleportation via noisy channels[J]. Phys Rev Lett, 1996,76(5):722-725.
[9] Bose S, Vedral V, Knight P L. Purification via entanglement swapping and conserved entanglement[J]. Phys Rev A, 1999,60:194.
[10] Kwiat P G, Barraza-Lopez S, Stefanov A, et al. Experimental entanglement distillation and “hidden” non-locality[J]. Nature(London), 2001,409:1014.
[11] Pan J W, Gasparoni S, Ursin R, et al. Experimental entanglement purification of arbitrary unknown states[J]. Nature(London), 2003,423:417.
[12] Zhao Zhi, Yang Tao, Chen Yu-Ao, et al. Experimental realization of entanglement concentration and a quantum repeater[J]. Phys Rev Lett, 2003,90:207901.
[13] Sheng Y B, Zhou L, Zhao S M. Efficient two-step entanglement concentration for arbitrary W states[J]. Phys Rev A, 2012,85:042302.
[14] Ji Y Q, Jin Z, Zhu A D, et al. Concentration of multi-photon entanglement with linear optics assisted by quantum nondemolition detection[J]. J Opt Soc Am B, 2014,31(5):994-999.
[15] Wang C, Zhang Y, Jin G. Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities[J]. Phys Rev A, 2011,84:032307.
[16] He L, Cao C, Wang C. Entanglement concentration for multi-particle partially entangled W state using nitrogen vacancy center and microtoroidal resonator system[J]. Optics Commun, 2013,298/299(1):260-266.
[17] Torun G, Yildiz A. Canonical operators and the optimal concentration of three-qubit Greenberger-Horne-Zeilinger states[J]. Phys Rev A, 2014,89:032320.
[18] Zhu M Z, Ye L. Efficient entanglement purification for Greenberger-Horne-Zeilinger states via the distributed parity-check detector[J]. Optics Commun, 2015,334(1):51-57.
[19] McDermott R, Simmonds R W, Steffen M, et al. Simultaneous state measurement of coupled Josephson phase qubits[J]. Science, 2005,307:1299-1302.
[20] Loss D, DiVincenzo D P. Quantum computation with quantum dots[J].Phys Rev A, 1998,57(1):120-126.
[21] Cheng L Y, Shao X Q, Zhang S, et al. Implementation of positive-operator-value measurements for single spin qubit via Heisenberg model[J]. Chin Phys B, 2010,19(9):140-144.
[22] 徐晶.海森伯XXZ自旋链的通用量子门解法[J].延边大学学报(自然科学版),2010,36(4):317-320.
[23] Piao M Z, Wang H F, Shao X Q, et al. Generation of multi-qubit graph states via spin networks[J]. Int J Theor Phys, 2011,50(10):3033-3042.
备注/Memo
收稿日期: 2017-03-30
*通信作者: 计新(1965—),女,教授,研究方向为量子光学与量子信息学.