[1]董举成,计新*.基于海森堡XX模型的多粒子自旋纠缠浓缩[J].延边大学学报(自然科学版),2018,44(01):31-34.
 DONG Jucheng,JI Xin*.Entanglement concentration for multipartite spin entangledstates via Heisenberg XX model[J].Journal of Yanbian University,2018,44(01):31-34.
点击复制

基于海森堡XX模型的多粒子自旋纠缠浓缩

参考文献/References:

[1] Bennett C H, Brassard G, Crépeau C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen chnannels[J]. Phys Rev Lett, 1993,70:1895-1899.
[2] Zheng S B, Guo G C. Efficient scheme for two-atom entanglement and quantum information processing in cavity QED[J]. Phys Rev Lett, 2000,85:2392-2395.
[3] Horodecki R, Horodecki P, Horodecki M, et al.Quantum entanglemnet[J]. Rev Mod Phys, 2009,81:865-942.
[4] Greenberger D M, Horne M A, Shimony A, et al. Bell's theorem without inequalities[J]. American Journal of Phusics, 1990,58(12):1131-1143.
[5] Dür W, Vidal G, Cirac J I. Three qubits can be entangled in two inequivalent ways[J]. Phys Rev A, 2000,62(6):062314.
[6] Nielsen M A, Chuang I L. Quantum Computation and Quantum Information[M]. New York: Cambridge University Press, 2000.
[7] Bennett C H, Bernstein H J, Popescu S, et al. Concentrating partial entanglement by local operations[J]. Phys Rev A, 1996,53:2046.
[8] Bennett C H, Brassard G, Popescu S, et al. Purification of noisy entanglement and faithful teleportation via noisy channels[J]. Phys Rev Lett, 1996,76(5):722-725.
[9] Bose S, Vedral V, Knight P L. Purification via entanglement swapping and conserved entanglement[J]. Phys Rev A, 1999,60:194.
[10] Kwiat P G, Barraza-Lopez S, Stefanov A, et al. Experimental entanglement distillation and “hidden” non-locality[J]. Nature(London), 2001,409:1014.
[11] Pan J W, Gasparoni S, Ursin R, et al. Experimental entanglement purification of arbitrary unknown states[J]. Nature(London), 2003,423:417.
[12] Zhao Zhi, Yang Tao, Chen Yu-Ao, et al. Experimental realization of entanglement concentration and a quantum repeater[J]. Phys Rev Lett, 2003,90:207901.
[13] Sheng Y B, Zhou L, Zhao S M. Efficient two-step entanglement concentration for arbitrary W states[J]. Phys Rev A, 2012,85:042302.
[14] Ji Y Q, Jin Z, Zhu A D, et al. Concentration of multi-photon entanglement with linear optics assisted by quantum nondemolition detection[J]. J Opt Soc Am B, 2014,31(5):994-999.
[15] Wang C, Zhang Y, Jin G. Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities[J]. Phys Rev A, 2011,84:032307.
[16] He L, Cao C, Wang C. Entanglement concentration for multi-particle partially entangled W state using nitrogen vacancy center and microtoroidal resonator system[J]. Optics Commun, 2013,298/299(1):260-266.
[17] Torun G, Yildiz A. Canonical operators and the optimal concentration of three-qubit Greenberger-Horne-Zeilinger states[J]. Phys Rev A, 2014,89:032320.
[18] Zhu M Z, Ye L. Efficient entanglement purification for Greenberger-Horne-Zeilinger states via the distributed parity-check detector[J]. Optics Commun, 2015,334(1):51-57.
[19] McDermott R, Simmonds R W, Steffen M, et al. Simultaneous state measurement of coupled Josephson phase qubits[J]. Science, 2005,307:1299-1302.
[20] Loss D, DiVincenzo D P. Quantum computation with quantum dots[J].Phys Rev A, 1998,57(1):120-126.
[21] Cheng L Y, Shao X Q, Zhang S, et al. Implementation of positive-operator-value measurements for single spin qubit via Heisenberg model[J]. Chin Phys B, 2010,19(9):140-144.
[22] 徐晶.海森伯XXZ自旋链的通用量子门解法[J].延边大学学报(自然科学版),2010,36(4):317-320.
[23] Piao M Z, Wang H F, Shao X Q, et al. Generation of multi-qubit graph states via spin networks[J]. Int J Theor Phys, 2011,50(10):3033-3042.

备注/Memo

收稿日期: 2017-03-30
*通信作者: 计新(1965—),女,教授,研究方向为量子光学与量子信息学.

更新日期/Last Update: 2018-03-20