ZHENG Mingliang.Perturbation and adiabatic invariants of Mei symmetry for constrained Hamilton system[J].Journal of Yanbian University,2017,43(04):327-333,370.
约束Hamilton系统Mei对称性的摄动和绝热不变量
- Title:
- Perturbation and adiabatic invariants of Mei symmetry for constrained Hamilton system
- 关键词:
- 约束Hamilton系统; 正则方程; Mei对称性; 摄动; Mei绝热不变量
- Keywords:
- constrained Hamilton system; canonical equations; Mei symmetry; perturbation; Mei adiabatic invariants
- 分类号:
- O316; O322; O175
- 文献标志码:
- A
- 摘要:
- 基于一般力学系统的对称性与守恒量理论,研究了相空间中奇异系统Mei对称性的摄动与绝热不变量问题.首先,给出了约束Hamilton系统的正则方程、系统Mei对称性确定方程、限制方程、附加限制方程以及结构方程和精确不变量的存在形式,在此基础上研究了系统正则方程受微扰后,系统无限小生成元的变化,得到了系统Mei对称性摄动确定方程以及导致的Mei绝热不变量的形式和条件; 其次,讨论了系统Mei对称性摄动与Noether对称性摄动、Lie对称性摄动之间的关系,并寻求了其他形式的高阶绝热不变量; 最后,通过实例验证了
- Abstract:
- Based on the theory of symmetry and conservation in general mechanical systems, the perturbation and adiabatic invariants of Mei symmetry of singular system in phase space are studied. Firstly, we give the canonical equations of the constrained Hamilton system, the determining equations of Mei symmetry, the restricted equations and the additional constraint equations, as well as the structural equations and the form of exact invariant, meanwhile, we study the change of the infinitesimal generating elements when the canonical equations are perturbed, and we get the perturbation determining equations of Mei symmetry, the condition and the form of Mei type adiabatic invariants. Secondly, we discuss the relationship among the perturbation of Mei symmetry, Noether symmetry and Lie symmetry, and seek other forms of high-order adiabatic invariants. Finally, the correctness of the results of this paper are verified by an example.
参考文献/References:
[1] 李子平.约束哈密顿系统及其对称性质[M].北京:北京工业大学出版社,1999.
[2] Dirac P A M. Lecture on Quantum Mechanics[M]. NewYork: Yeshiva University Press, 1964.
[3] Dirac P A M. Quantization of Singular systems[J]. Can J Math, 1950,2:122-199.
[4] Li Z P, Jiang J H. Symmetries in Constrained Canonical System[M]. Beijing: Science Press, 2002.
[5] 李子平.非完整奇异系统正则形式的广义Noether定理及其逆定理[J].黄淮学刊,1992,3(1):8-16.
[6] 李子平.正则形式的Noether定理及其应用[J].科学通报,1991,36(12):954-958.
[7] 李子平.约束系统的经典和量子对称性质[M].北京:北京工业大学出版社,1993.
[8] 梅凤翔.李群和李代数对约束力学系统的应用[M].北京:科学出版社,1999.
[9] 张毅,薛纭.仅含第二类约束的约束Hamilton系统的Lie对称性[J].物理学报,2001,50(5):816-819.
[10] 罗绍凯.奇异系统Hamilton正则方程的Mei对称性、Noether对称性和Lie对称性[J].物理学报,2004,53(1):5-11.
[11] 李爱民,江金环.非完整约束系统的正则对称性[J].武汉交通职业学院学报,2013,15(3):1-3.
[12] 郑明亮,傅景礼.约束Hamilton系统的稳定性研究[J].商丘师范学院学报,2017,33(9):14-17.
[13] 梅凤翔,刘端,罗勇.高等分析力学[M].北京:北京理工大学出版社,1991.
[14] Kruskal M. Asymptotic theory of Hamiltonian and other system with all solutions nearly periodic[J]. J Math Phy, 1962,3(4):806-828.
[15] Djukic D S. Adiabatic invariants for dynamical systems with one degree of freedom[J]. Int J Nonlinear Mech, 1981,16:489-498.
[16] 赵跃宇.力学系统对称性的摄动与绝热不变量[J].湖南大学学报(自然科学版),1996,23(1):45-50.
[17] Chen X W, Zhang R C, Mei F X. Perturbation to the symmetries of Birkhoff system and adiabatic invariants[J]. Acta Mechanica Sinica, 2000,16(3):282-288.
[18] Chen X W, Li Y M. Pertirbation to symmetries and adiabatic invariants of a type of nonholonomic Singular system[J]. Chinese Physics, 2003,12(12):1349-1353.
[19] 张毅.相空间中离散力学系统对称性的摄动与Hojman型绝热不变量[J].物理学报,2007,56(4):1855-1859.
[20] 傅景礼,陈立群,谢凤萍.相对论Birkhoff系统的对称性摄动及其逆问题[J].物理学报,2003,52(11):2664-2670.
[21] 张毅.非保守动力学系统Noether对称性的摄动与绝热不变量[J].物理学报,2013,62(16):4501-4506.
[22] Luo S K, Chen X W, Guo Y X. Lie Symmetrical pertirbation and adiabatic invariants of generalized Hojman type for lagrange systems[J]. Chinese Physics, 2007,16(11):3176-3181.
[23] 李元成,张毅,梁景辉.一类非完整奇异系统的Lie对称性与守恒量[J].物理学报,2002,51(10):2186-2190.
[24] 梅凤翔.分析力学:下卷[M].北京:北京理工大学出版社,2013.
备注/Memo
收稿日期: 2017-09-08 基金项目: 国家自然科学基金资助项目(11472247)作者简介: 郑明亮(1988—),男,在读博士研究生,研究方向为分析力学和数学物理等.