[1]王小瑞,刘喜兰.条件最优的两步迭代法及Jarratt变形方法[J].延边大学学报(自然科学版),2017,43(04):314-320,349.
 WANG Xiaorui,LIU Xilan.A conditional optimal two-step iterative method and a variant of Jarratt method[J].Journal of Yanbian University,2017,43(04):314-320,349.
点击复制

条件最优的两步迭代法及Jarratt变形方法

参考文献/References:

[1] Ostrowski A M. Solutions of Equations and System of Equations[M]. New York: Academic Press, 1960.
[2] Jarratt P. Some fourth order multipoint iterative methods for solving equations[J]. Math Comput, 1966,20(95):434-437.
[3] Kung H T, Traub J F. Optimal order of one-point and multipoint iterations[J]. J Assoc Comput Math, 1974,21(4):643-651.
[4] Frontini M, Sormani E. Third-order methods from quadrature formulae for solving systems of nonlinear equations[J]. Appl Math Comput, 2004,149(3):771-782.
[5] Darvishi M T, Barati A. A third-order Newton-type method to solve systems of nonlinear equations[J]. Appl Math Comput, 2007,187(2):630-635.
[6] Kou J, Li Y, Wang X. A composite fourth-order iterative method for solving non-linear equations[J]. Appl Math Comput, 2007,184(2):471-475.
[7] Chun C B. Some third-order families of iterative methods for solving nonlinear equations[J]. Appl Math Comput, 2007,188(1):924-933.
[8] Liu X L, Wang X R. Modifications of higher-order convergence for solving nonlinear equations [J]. J Comput Appl Math, 2011,235(17):5105-5111.
[9] Liu X L, Wang X R. A convergence improvement factor and higher-order methods for solving nonlinear equations[J]. Appl Math Comput, 2012,218(15):7871-7875.
[10] Weerakoon S, Fernando G I. A variant of Newton’s method with accelerated third-order convergence[J]. Appl Math Lett, 2000,13(8):87-93.
[11] Chun C B. Iterative methods improving Newton’s method by the decomposition method[J]. Comput Math Appl, 2005,50(10/12):1559-1568.
[12] Chun C B. A new iterative method for solving nonlinear equations[J]. Appl Math Comput, 2006,178(2):415-422.
[13] Noor M A, Noor K I. Modified iterative methods with cubic convergence for solving nonlinear equations[J]. Appl Math Comput, 2007,184(2):322-325.

备注/Memo

收稿日期: 2017-07-22 作者简介: 王小瑞(1984—),女,讲师,研究方向为微分方程数值解及其应用.基金项目: 国家自然科学基金资助项目(11361047,11561043); 青海省自然科学基金资助项目(2017-ZJ-908)

更新日期/Last Update: 2017-12-20