WANG Xiaorui,LIU Xilan.A conditional optimal two-step iterative method and a variant of Jarratt method[J].Journal of Yanbian University,2017,43(04):314-320,349.
条件最优的两步迭代法及Jarratt变形方法
- Title:
- A conditional optimal two-step iterative method and a variant of Jarratt method
- 分类号:
- O241.7
- 文献标志码:
- A
- 摘要:
- 以yn=xn-θ(f(xn))/(f’(xn))(0<θ≤1)为基础,构造了一类新的带有参数的条件最优的两步迭代方法,其收敛阶数可达到四阶,且符合Kung-Traub猜想(n=3情形).另外,该方法包含了一些已有的迭代法,尤其包含了Jarratt方法.数值验证表明,本文方法优于牛顿迭代法及一些已有的方法,具有较好的有效性和可行性.
- Abstract:
- Based on yn=xn-θ(f(xn))/(f’(xn))(0<θ≤1), a new conditional optimal two-step iterative method with one-parameter for solving nonlinear equations is presented. The order of convergence arrives to at least four and agrees with the conjecture of Kung-Traub for the case n=3. Moreover, this method contains some existing methods especially contains the Jarratt method. Several numerical results are shown that this method is surperior to Newton’s method and other existing methods. Therefore our method is more efficient and performs better than other methods.
参考文献/References:
[1] Ostrowski A M. Solutions of Equations and System of Equations[M]. New York: Academic Press, 1960.
[2] Jarratt P. Some fourth order multipoint iterative methods for solving equations[J]. Math Comput, 1966,20(95):434-437.
[3] Kung H T, Traub J F. Optimal order of one-point and multipoint iterations[J]. J Assoc Comput Math, 1974,21(4):643-651.
[4] Frontini M, Sormani E. Third-order methods from quadrature formulae for solving systems of nonlinear equations[J]. Appl Math Comput, 2004,149(3):771-782.
[5] Darvishi M T, Barati A. A third-order Newton-type method to solve systems of nonlinear equations[J]. Appl Math Comput, 2007,187(2):630-635.
[6] Kou J, Li Y, Wang X. A composite fourth-order iterative method for solving non-linear equations[J]. Appl Math Comput, 2007,184(2):471-475.
[7] Chun C B. Some third-order families of iterative methods for solving nonlinear equations[J]. Appl Math Comput, 2007,188(1):924-933.
[8] Liu X L, Wang X R. Modifications of higher-order convergence for solving nonlinear equations [J]. J Comput Appl Math, 2011,235(17):5105-5111.
[9] Liu X L, Wang X R. A convergence improvement factor and higher-order methods for solving nonlinear equations[J]. Appl Math Comput, 2012,218(15):7871-7875.
[10] Weerakoon S, Fernando G I. A variant of Newton’s method with accelerated third-order convergence[J]. Appl Math Lett, 2000,13(8):87-93.
[11] Chun C B. Iterative methods improving Newton’s method by the decomposition method[J]. Comput Math Appl, 2005,50(10/12):1559-1568.
[12] Chun C B. A new iterative method for solving nonlinear equations[J]. Appl Math Comput, 2006,178(2):415-422.
[13] Noor M A, Noor K I. Modified iterative methods with cubic convergence for solving nonlinear equations[J]. Appl Math Comput, 2007,184(2):322-325.
备注/Memo
收稿日期: 2017-07-22 作者简介: 王小瑞(1984—),女,讲师,研究方向为微分方程数值解及其应用.基金项目: 国家自然科学基金资助项目(11361047,11561043); 青海省自然科学基金资助项目(2017-ZJ-908)