LIU Yiding,WANG Yizhu,HOU Chengmin*.Lyapunov type inequalities for quasi-linear fractional order difference systems[J].Journal of Yanbian University,2017,43(04):283-290.
半线性分数阶差分系统的Lyapunov型不等式
- Title:
- Lyapunov type inequalities for quasi-linear fractional order difference systems
- 关键词:
- 半线性; 分数阶; 差分系统; Lyapunov型不等式
- Keywords:
- quasi-linear; fractional order; difference system; Lyapunov inequality
- 分类号:
- O175.4
- 文献标志码:
- A
- 摘要:
- 在Dirichlet边界条件下,利用H?lder不等式建立了二维半线性分数阶差分系统的Lyapunov型不等式,并将所得结果推广到了m维半线性分数阶差分系统上.进一步,应用所得的Lyapunov型不等式,获得了有关广义谱第一特征值的下界.
- Abstract:
- Two dimensional quasi-linear fractional order difference systems are studied under the Dirichlet boundary conditions. By H?lder inequality, we establish Lyapunov type inequalities for two-dimensional quasi-linear fractional order difference systems and the results are generalized to m dimensional quasi-linear fractional difference systems. Applying these results, we also obtain some lower bounds for the first eigenvalue in the generalized spectra.
参考文献/References:
[1] Atkinson F V. Discrete and Continuous Boundary Problems[M]. New York: Academic Press, 1964.
[2] Cheng S S. A discrete analogue of the inequality of Lyapunov[J]. Hokkaido Mathematical Journal, 1983,12(1):105-112.
[3] Liapounoff A M. Probléme général de la stabilité du movement[J]. Ann Fac Sci Toulouse Sci Math Sci Phys, 1907,2(9):203-474.
[4] ünal M, Cakmak D, Tiryaki A. A discrete analogue of Lyapunov-type inequalities for nonlinear systems[J]. Comput Math Appl, 2003,55(11):1399-1416.
[5] Zhang Q M, Tang X H. Lyapunov-type inequalities for the quasilinear difference systems[J]. Discrete Dynamics in Nature and Society, 2012,2012:DOI 10.1155/2012/860598.
[6] He Xianfei, Zhang Qiming. A discrete analogue of Lyapunov-type inequalities for nonlinear difference system[J]. Comput Math Appl, 2011,62:677-684.
[7] Guseinov G Sh, Kcalan B Kayma. Lyapunov inequalities for discrete linear Hanailtonian systems[J]. Comput Math Appl, 2003,45:139-156.
[8] Jiang L Q, Zhou Z. Lyapunov inequality for linear Hamiltonian Systems[J]. J Math Anal Appl, 2005,310:579-593.
[9] He Yansheng, Hou Chengmin. Existence of solutions for discrete fractional boundary value problems with p-Laplacian operator[J]. Journal of Mathematical Research with Applications, 2014,34(2):192-208.
[10] Ibrahim Rabha W, Jalab H A. Existence of a class of fractional difference equations with two point boundary value problem[J]. Advances in Difference Equations, 2015,2015:DOI 10.1186/s13662-015-0609-1.
[11] Xie Zuoshi, Hou Chengmin. Properties of right fractional sum and right fractional difference operators and application[J]. Advances in Difference Equations, 2015,2015:DOI 10.1186/s13662-015-0616-2.
相似文献/References:
[1]王娜.一类具有隔离项的时滞分数阶SIQ传染病模型的稳定性分析[J].延边大学学报(自然科学版),2023,(01):36.
WANG Na.Stability analysis of a class of time - lagged fractional - order SIQ infectious disease models with segregation[J].Journal of Yanbian University,2023,(04):36.
备注/Memo
收稿日期: 2017-07-12 基金项目: 国家自然科学基金资助项目(11161049)*通信作者: 侯成敏(1963—),女,教授,研究方向为常微分方程与离散动力系统.