JIN Xiaozhen,HOU Chengmin*.Existence of positive solutions for boundary value problems of a class of nonlinear fractional q -symmetry differences equation[J].Journal of Yanbian University,2017,43(01):1-6.
一类非线性分数阶q -对称差分方程边值问题正解的存在性
- Title:
- Existence of positive solutions for boundary value problems of a class of nonlinear fractional q -symmetry differences equation
- 关键词:
- q-对称Riemann-Liouville分数阶导数; 锥; 边值问题; 解的存在性
- Keywords:
- q -symmetry Riemann-Liouville fractional order derivative; cones; boundary value problem; existence of solutions
- 分类号:
- O175.6
- 文献标志码:
- A
- 摘要:
- 考虑了一类Riemann-Liouville型非线性分数阶q-对称差分方程边值问题正解的存在性.首先分析了格林函数的一些性质,然后利用锥上的不动点定理证明了该方程正解的存在性,最后通过实例验证了本文所得结论的正确性.
- Abstract:
- We consider the existence of positive solutions for boundary value problems of a class of nonlinear fractional q -symmetry differences equation. Firstly, some properties of the Green function are analyzed. The second, the existence of positive solutions for the boundary value problems is investigated by applying a fixed point theorem in cones. The end, we give an example to illustrate our results.
参考文献/References:
[1] Jackson F H. On q -definite integrals, Quart[J]. J Pure Appl Math, 1910,41:193-203.
[2] Jackson F H. q -difference equations, Amer[J]. J Math, 1910,32(4):305-314.
[3] Al-Salam W A. Some fractional q -integrals and q -derivatives[J]. Proc Edinb Math Soc, 1996,15(2):135-140.
[4] Agarwal R P. Certain fractional q -integrals and q -derivatives[J]. Proc Cambridge Philos Soc, 1996,66:365-370.
[5] Don N Page. Information in black hole radiation[J]. Phys Rev Lett, 1993,71(23):3743-3746.
[6] Youm D. q -deformed conformal quantum mechanics[J]. Phys Rev D, 2000,62(9):276-284.
[7] Annaby M H, Mansour Z S. q -Fractional Calculus and Equations[M]. Berlin Heidelberg: Springer-Verlag, 2012.
[8] Ferreira R. Nontrivial solutions for fractional q -difference boundary value problems[J]. Electron J Qual Theory Differ Equ, 2010(70):1-10.
[9] Ferreira R. Positive solutions for a class of boundary value problems with fractional q -differences[J]. Comput Math Appl, 2011,61:367-373.
[10] Liang S, Zhang J. Existence and uniqueness of positive solutions for three-point boundary value problem with fractional q -differences[J]. J Appl Math Comput, 2012,40:277-288.
[11] Zhao Yulin, Chen Haibo, Zhang Qiming. Existence results for fractional q -difference equations with nonlocal q -integral boundary conditions[J]. Advances in Difference Equations, 2013(1):48.
[12] Ahmad B, Ntouyas S K, Purnaras I K. Existence results for non-local boundary value problems of nonlinear fractional q -difference equations[J]. Adv Differ Equ, 2012(1):140.
[13] Ahmad B, Nieto J J, Alsaedi A, et al. Existence of solutions for nonlinear fractional q -difference integral equations with two fractional orders and non-local four-point boundary conditions[J]. Journal of the Franklin Institute, 2014,351:2890-2909.
[14] Wang Jufang, Yu Changlong, Gao Yanping. Positive solutions for a class of singular boundary value problems with fractional q -difference equations[J]. Journal of Function Spaces, 2015(2015): Article ID 418569,8. http://dx.doi.org/10.1155/2015/418569.
[15] Ricardo Almeida, Natália Martins. Existence results for fractional q -difference equations of order with three-point boundary conditions[J]. Communications in Nonlinear Science and Numerical Simulation, 2014,19(6):1675-1685.
[16] Sun Mingzhe, Jin Yuanfeng, Hou Chengmin. Certain fractional q -symmetric integrals and q -symmetric derivatives and their application[J]. Adv Differ Equ, 2016(1):222.
备注/Memo
收稿日期: 2016-12-24 基金项目: 国家自然科学基金资助项目(11161049)
*通信作者: 侯成敏(1963—),女,教授,研究方向为微分方程理论及其应用.