ZHUANG Kejun.Stability analysis of a food-chain model incorporating prey refuge and diffusive term[J].Journal of Yanbian University,2016,42(04):306-309.
一类含有避难所和扩散项的食物链模型的稳定性
- Title:
- Stability analysis of a food-chain model incorporating prey refuge and diffusive term
- Keywords:
- food-chain model; refuge; stability
- 分类号:
- O175.26
- 文献标志码:
- A
- 摘要:
- 讨论一类考虑食饵具有避难所的三种群食物链扩散系统.首先研究解的全局存在性与有界性,其次利用线性化方法研究了非负平衡点的局部稳定性,最后利用Lyapunov函数方法研究了其正平衡点的全局渐近稳定性.
- Abstract:
- The three-species food-chain model with prey refuge and diffusive term is considered in this paper. First the global existence and boundedness of solutions are studied, then the local asymptotic stability of nonnegative equilibrium points is investigated by linearization method, finally the global asymptotic stability of positive equilibrium point is obtained due to the Lyapunov function technique.
参考文献/References:
[1] Debasis Mukherjee. The effect of prey refuges on a three species food chain model[J]. Differ Equ Dyn Syst, 2014,22(4):413-426.
[2] Yang Ruizhi, Zhang Chunrui. Dynamics in a diffusive predator-prey system with a constant prey refuge and delay[J]. Nonlinear Anal Real World Appl, 2016,31:1-22.
[3] Debaldev Jana, Rashmi Agrawal, Ranjit Kumar Upadhyay. Dynamics of generalist predator in a stochastic environment effect of delayed growth and prey refuge[J]. Appl Math Comput, 2015,268:1072-1094.
[4] Swarnali Sharma, Samanta G P. A Leslie-Gower predator-prey model with disease in prey incorporating a prey refuge[J]. Chaos, Solitons and Fractals, 2015,70:69-84.
[5] Jai Prakash Tripathi, Syed Abbas, Manoj Thakur. A density dependent delayed predator-prey model with Beddington-DeAngelis type function response incorporating a prey refuge[J]. Commun Nonlinear Sci Numer Simulat, 2015,22(1/3):427-450.
[6] Wang Jinfeng, Wei Junjie, Shi Junping. Global bifurcation analysis and pattern formation in homogeneous diffusive predator-prey systems[J]. J Differential Equations, 2016,260:3495-3523.
[7] Zhang Xueli, Huang Yehui, Weng Peixuan. Permanence and stability of a diffusive predator-prey model with disease in the prey[J]. Comput Math Appl, 2014,68(10):1431-1445.
[8] 林支桂.数学生态学导引[M].北京:科学出版社,2013.
[9] Peter Y H Pang, Wang Mingxin. Strategy and stationary pattern in a three-species predator-prey model[J]. J Differential Equations, 2004,200(2):245-273.
相似文献/References:
[1]刘英姿,李忠,何梦昕.具有恐惧效应和食饵避难所的Leslie - Gower捕食者-食饵模型的动力学分析[J].延边大学学报(自然科学版),2022,(02):112.
LIU Yingzi,LI Zhong,HE Mengxin.Dynamics analysis of a Leslie - Gower type predator - prey model with fear effect and prey refuge[J].Journal of Yanbian University,2022,(04):112.
[2]王逸勤,施春玲.具有常数避难所和恐惧效应的HollingⅡ类功能性反应捕食食饵系统的定性分析[J].延边大学学报(自然科学版),2023,(02):116.
WANG Yiqin,SHI Chunling.Qualitative analysis of a predator-prey system with Holling type Ⅱ functional response incorporating fear effct and a constant prey refuge[J].Journal of Yanbian University,2023,(04):116.
备注/Memo
收稿日期: 2016-09-14 作者简介: 庄科俊(1982—),男,副教授,研究方向为微分方程理论及其应用.
基金项目: 国家自然科学基金资助项目(11301001); 安徽省高校优秀青年人才支持计划重点项目(gxyqZD2016100)